
The DINO User's Manual 

T. NI. Derby, E. Eskow, R. K. Neves, M. Rosing, 

R. B. Schnabel, and R. P. Weaver 

CU-CS-501-90 November 1990 

Department of Computer Science 
Campus Box 430 

University of Colorado 
Boulder, Colorado, 80309-0430 USA 

This research was supported by NSF grant ASC-9015.577, NSF grant CDA-8922.510, and 
AFOSR grant AFOSR-90-0109. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 1990 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1990 to 00-00-1990  

4. TITLE AND SUBTITLE 
The DINO User’s Manual 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Colorado,Department of Computer 
Science,Boulder,CO,80309 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

129 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 





Any opinions, findings, and conclusions or recommendations expressed in this publication 
are those of the author and do not necessarily reflect the views of the National Science 
Foundation. 





Contents 

1 Introduction 

2 Basic DINO 

2.1 What DINO Is ..... . 

2.2 Basic Programming Model 

2.2.1 DINO Overview 

2.2.2 Walkthrough ... 

2.2.3 Matrix-Vector Multiply . 

2.2.4 Matrix-Matrix Multiply 

3 DINO - The Language 

3.1 Program Structure 

3.2 Environments . . . 

3.3 Composite Procedures 

3.4 Distributed Data . . . 

3.4.1 Declaring Distributed Data 

3.4.2 Predefined }Aappings . . . . 

3.4.3 "Home" and "Copy" Data 

3.4.4 Using Distributed Data . 

3.5 Reduction Functions 

3.6 Subarrays and Ranges 

3.7 User-Defined Mappings 

3.7.1 Mapping Philosophy 

3.7.2 Mapping Definition 

4 DINO Examples 

4.1 Index of Features 

4.2 "Hello vVorld" . . 

4.3 Matrix-Vector Multiply . 

4.4 Smoothing Algorithms 

4.5 Complex Examples .. 

3 

4 

4 

5 

5 

8 

9 

13 

24 

24 

24 

26 

28 

28 

29 

30 

30 

33 

34 

35 

35 

36 

39 

39 

42 

47 

64 

82 

1 



5 How to use DINO 

5.1 Overview . 

5.2 Setting.up 

5.3 Invoking the Compiler 

5.4 Using Environment Variables 

5.5 Doing Things Manually. 

6 DINO Hints 

6.1 Known Compiler Bugs ............... . 

6.2 What the Compiler Doesn't Do (run-time checking) 

6.3 Performance Hints 

7 Installation Notes 

7.1 Installing the Front End 

7.1.1 Where to Install DINO 

7.1.2 Reading the README file . 

7.1.3 Setting up the DINO System Files 

7.1.4 

7.1.5 

How to Generate the Front End . 

Configuring the Front End 

7.2 Installing the Back End ..... 

7.2.1 Where to Install DINO 

7.2.2 Setting up the DINO System Files 

7.2.3 

7.2.4 

How to Generate the Back End 

Configuring the Back End . . . 

7.3 Complex Sun/Parallel Machine Interactions 

7.4 Updates ................... . 

A EBNF Specification for DINO Extensions to C 

106 

106 

106 

107 

109 

109 

110 

110 

113 

114 

114 

115 

115 

115 

115 

116 

116 

117 

117 

117 

117 

117 

118 

118 

119 

2 



1 Introduction 

DINO (Distributed Numerically Oriented language) is a language for writing parallel 
programs for distributed memory (MIMD) multiprocessors. It is oriented towards 
expressing data parallel algorithms, which predominate in parallel numerical compu
tation. Its goal is to make programming such algorithms natural and easy, without 
hindering their run-time efficiency. DINO consists of C augmented by several high 
level parallel constructs that are intended to allow the parallel program to conform 
to the way an algorithm designer naturally thinks about parallel algorithms. The key 
constructs are the ability to declare a virtual parallel computer that is best suited 
to the parallel computation, the ability to n1ap distributed data structures onto this 
virtual machine, and the ability to define procedures that will run on each processor 
of the virtual machine concurrently. ~lost of the remaining details of distributed par
allel computation, including process management and interprocessor communication, 
result implicitly from these high level constructs and are handled automatically by 
the compiler. 

Section 2 contains a short description of the DINO language, followed by 
a methodology for writing DINO programs, and two examples. The definitions of 
all DINO constructs are in Section 3. Section 4 has a number of examples, with a 
features index. Section 5 contains information about how to setup DINO and how to 
use the compiler itself. Section 6 contains a list of known compiler bugs, plus hints on 
run-time errors and performance. Information on how to install DINO is contained in 
Section 7. Finally, Appendix A contains a complete EBNF specification for the DINO 
extensions to the C language. 

This manual is probably unlike any manual you have 
used before. In particular, Section 2 gives a conceptual overvie\v 
ofhovv a programmer should approach vvritting DINO programs, 
along with two examples of hovv to use this approach. Section 4 
gives a large number of example programs that illustrate various 
DINO features. We suggest that nevv users should probably read 
Sections 2 and 5 in order to get started. Users can then proceed 
to the examples in Section 4, or read the reference material in 
Section 3. 
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2 Basic DINO 

2.1 What DINO Is 

DINO is a language for writing parallel numerical programs for distributed memory 
multiprocessors. By a distributed memory multiprocessor we mean a computer with 
multiple, independent processors, each with its own memory, but with no shared 
memory or shared address space, so that communication between processors is ac
complished by passing messages. Examples include MIMD hypercubes, and networks 
of computers used as multiprocessors. 

It is generally harder to design an algorithm for a multiprocessor than for a 
serial machine, because the algorithm designer has more tasks to accomplish. First, 
the algorithm designer must divide the desired computation among the available 
processors. Second, the algorithm designer must decide how these processes will 
synchronize. In addition, on a distributed memory multiprocessor, the algorithm 
designer must consider how data should be distributed among the processors, and 
how the processors should communicate any shared information. 

The goal of DINO is to make programming distributed memory parallel nu
merical algorithms as easy as possible, without hindering efficiency. We believe that 
the key to this goal is raising the task of specifying algorithm and data decomposition, 
interprocess communication, and process management to a higher level of abstrac
tion than is provided in many current message passing systems. DINO accomplishes 
this by providing high level parallel constructs that conform to the way the algo
rithm designer naturally thinks about the parallel algorithm. This, in turn, transfers 
many of the low-level details associated with distributed parallel computation to the 
compiler. In particular, details regarding message passing, process management, and 
synchronization are no longer necessary in the code that the programmer writes, and 
associated efficiency considerations are addressed by the compiler. 

This high level approach to distributed numerical con1putation is feasible be
cause so many numerical algorithms are highly structured. The major data structures 
in these algorithms are usually arrays. In addition, the algorithms usually exhibit data 
parallelism, where at each stage of the computation, parallelism is achieved by divid
ing the data structures into pieces, and performing similar or identical computations 
on each piece concurrently. DINO is mainly intended to support such data parallel 
computation, although DINO also provides some support for functional parallelisn1. 

The basic approach taken in DINO is to provide a top down description of 
the distributed parallel algorithm. The programmer first defines a virtual parallel 
machine that best fits the major data structures and con1n1unication patterns of the 
algorithm. Next, the programmer specifies the way that these major data structures 
will be distributed, and possibly replicated, among the virtual processors. Finally, the 
programmer provides procedures that \vill run on each virtual processor concurrently. 
Thus the basic model of parallelism is Single Progran1 .NI ulti ple Data, although far 
more cornplexity is possible. Most of the remaining details of parallel computation 
and communication are handled implicitly by the compiler. A key component in 
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making this approach viable has been the development of a rich mechanism for spec
ifying the mappings of data structures to virtual machines, along with the efficient 
implementation of these mappings and the resultant communication patterns in the 
compiler. 

Sequential code in a DINO program is written in standard C; DINO is a 
superset of C. Only the parallel constructs in DINO, and a few related additions, are 
new. 

2.2 Basic Programming Model 

Rather than just jumping in and confusing yourself with all the syntax of DINO, we 
believe it is more useful to start by looking at a conceptual overview of how DINO 
programs are written. We have followed this by two examples which show how to 
proceed from algorithm to finished code. The first of these examples is extremely 
simple, the second more complex. 

We urge you to read the overview section, and at least the first example. 
This should give you enough of the flavor of DINO that you will understand the formal 
language definition and examples (in Sections 3 and 4). 

2.2.1 DINO Overview 

When writing programs in DINO, we have found it useful to proceed in a specific 
sequence of conceptual "steps." Our particular way of looking at the process of 
solving a problem in DINO helps us to structure the solution so it best fits the DINO 
paradigm. We suggest that you try this method of organizing the process of turning 
your solutions into DINO code at least long enough to get an idea of how we feel 
you should think about parallel numerical problems in DINO. There are five specific 
"steps": 

• Step 0- Begin with a good understanding of the problem and a general approach 
to its solution. 

In order to use our method, you must begin with a good understanding of 
your problem and a general approach to its solution, including what you believe 
the main data structures should look like and an idea of how work can be divided 
among a number of processors. 

• Step 1 - Choose a structure of environments appropriate to the problem. 

In DINO, environments are virtual processors. In the current version of 
DINO, there should be only one virtual processor for each real processor on the 
target machine, due to memory and speed limitations. A group of environments 
that is used for a particular computational task is structured (a vector, 2D array, 
etc.) to make it easier to visualize how the data and the work is divided up and 
to rnake it easier to name particular environrnents. 
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You choose the particular structure of environments by having some idea of 
how your data structures will be broken up. If, for example, your major data 
structure is a 2D matrix and you want to send each row to an environment, choose 
a vector of environments. If your major data structure is a 2D matrix and you 
want to send each element to an environment, choose a 2D array of environments. 
Obviously, if you have more than one data structure, the environment structure 
must be the same for each or you need to clarify how your solution will work. 

• Step 2 - Determine how the principal data structures should be distributed 
among the environments in the structure you have chosen (specify the mappings). 

For each of your data structures, you should specify how it is mapped onto 
the structure of environrnents you have decided to use. Conceptually, this task 
can be divided into three parts: 

Determine the basic partitioning. 

Most of your major data structures will be broken up and distributed 
among the environments in the structure of environments that you specified. 
For example, if you have an N by N array named A to be distributed to 
a structure of environments named "node" which is a vector of size N you 
might want to think of putting one row on each environment so that A[O] [] 
is on node[O]. It is useful to think of node[O] as the owner of A[O][] or of 
node[O] as being the home of A[O][]. 

Determine any replication. 

In some cases, you will want to have the same data structure copied 
(replicated) on all environments in a structure of environments. You will 
want to do these when every environment needs access to the same values. 
vVhile you can think of this as "partitioning" the data structure so that the 
whole thing goes to the first environment, then placing complete "copies" 
on all the other environments (see the next point), it is confusing to view 
it this way (this is how it is actually implemented). Instead, think of these 
data structures as simply replicated everywhere. 

Determine where any copies (used for communication) go. 

Finally, you may want to determine that copies of parts of the data 
structure should be on environments other than the "home" environment for 
that part of your data structure. These copies will be used to indicate that 
you will communicate values for this data from the "home" environments 
to the environments where the copies are. The environments in which this 
copied data is placed are referred to as "copy" environments. For example, 
if you have broken a 2D array up by columns, each environn1ent might need 
the values from the neighboring columns to do its computations. In this 
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case, you would want a copy of each column to be on the environments 
to the "right" and the "left" of the "home" environment for that column 
(except for the end columns). 

The compiler uses this copy information to simplify communications. 
When you tell DINO to "send" the "home" column, it knows to send it to the 
environments where copies exist. When you tell DINO to "receive" a "copy" 
column, it knows what environment to receive it from. (The compiler also 
creates permanent storage for any "copy" data on an environment, a fact 
you may find important if you have very large data structures.) 

The mechanics of specifying this to DINO are usually simple. There are a fair 
number of predefined mappings in the include file "dino.h". For example, Block 
puts each element of a vector on an environment in a vector of environments 
(assuming the number of elements equals the number of environments). The 
mapping function all replicates a data structure on each environment. Block
Overlap puts each element of a vector on an environment in a vector of environ
ments and a copy of each element on the two neighboring environments (except 
for the edges). You simply use the one of these that fits your situation. If you 
have to, you can build your own mappings (information on this process can be 
found in Section 3. 7.2). 

• Step 3 -Write a composite procedure to implement computation in the structure 
of environmen:ts. 

Determine what computations will take place in an environment. The code 
should be written for one environment. This means that you must have some 
way of identifying the particular environment your code is executing on. That 
is the function of the identifiers in the declarations for each of the environment 
indices, referred to in this manual as environment index identifiers. For example, 
if the environment declaration is "environment node [10: id] { ... r'' "id" is 
a constant that contains the number of the current environment. 

You can conceptually break writing a composite procedure down into three 
"steps": 

Write the code for the computation. 

Write the code for one environment assuming that all the necessary 
data is available there. 

Insert any necessary receives. 

If during the computation, you will need updated values in the data 
that is "copy" data on this environment, put in receives for that data. A 
good rule of thurnb is to put the receives in as late in the computation 
as possible. A second rule of thumb is that data comn1unicated between 
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environments should be sent and received in as large blocks as is possible. 
Obviously, these two rules sometimes conflict, and you must decided what 
the best trade-off is. 

Insert the corresponding sends. 

Finally, you have to put in sends corresponding to the receives you 
inserted in the last step. Again, a good rule of thumb is to put the sends 
in as early in the computation as possible, and to send in blocks where 
possible. 

When doing these steps, we've found that it's best to write code for the "middle" 
first. Most of the complications in DINOcode occur at the "edges," so we suggest 
that you write code for the middle first. Then modify it to take into account the 
extra complications introduced by the edge conditions. 

We mean "middle" in two senses - spatially and temporally. Spatially 
means the middle of your distributed data structures. Often, more complicated 
code has to be written for the edges, for one of the following reasons: 

1. The actual edge of the global data structure may have different communi
cation patterns than the central portions. Your code may need to reflect 
this. 

2. If you block your distributed data (put more than one element on an axis in 
an environment,) then then edge of the block on an environment may have 
to be treated differently. 

Temporally means that the first and last iterations of a loop are often differ
ent than the others. For example, DINO initializes copy data when parameters 
are distributed. This may mean that a first send/receive pair is unnecessary. 

• Step 4 - Finally, write a host environment, containing a main() function, to 
implement computation on the host environment. 

Write the code that does any initialization, calls the corr1posite procedure( s), 
and processes the results from the cornposite procedure(s). All the data used by 
composite procedures is passed in as parameters to these procedures. DINO will 
automatically distribute this data in the manner specified by your mappings. 

2.2.2 Walkthrough 

To illustrate writing a DINO program, we offer two examples. The first is a very 
simple program intended to show the basic application of the principles outlined in 
the overview. The second is a somewhat more complex exa1nple intended to show 
some of the subtleties involved in using DINO. We will \valk through the steps outlined 
above for each example to illustrate the process. 
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These examples illustrate the thought process that a programmer should go 
through when writting a DINO program. To get much out of them, they have to be 
read carefully and not just skimmed. We recommend setting aside some time to work 
through them carefully. 

2.2.3 Matrix-Vector Multiply 

This example takes a very simple problem, a matrix-vector multiplication where the 
number of rows in the matrix is the same as the number of processors available, and 
shows how to write a DINO program to solve this problem. 

• Step 0 Begin with a good understanding of the problem and a general approach 
to its solution. 

The algorithm is almost trivial- each element of the solution vector is ob
tained by taking the dot product of the corresponding row of the multiplicand 
matrix with the multiplicand vector. To parallelize this problem, we will choose 
to send each row of the multiplicand matrix to a processor, a copy of the multi
plicand vector to each processor, and collect each element of the answer vector 
back from the processors. 

If we draw a picture of our algorithm (we usually resort to drawing pictures 
to understand all but the simplest algorithms), we get something like this: 

X 

• Step 1 - Choose a structure of environments appropriate to the problem. 

Given the way we have decided to break up the problem, a vector of envi
ronments seems appropriate. vVe will use a structure of environments the size of 
the machine (which we assume to be 16). So our code initially looks like this: 

environment node[N] 
{ 

} 

To make things easier to change, we will use a macro definition - JV, which will 
represent both the size of the machine and the size of the array and vectors ( 16). 
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• Step 2 - Determine how the principal data structures should be distributed 
among the environments in the structure you have chosen (specify the mappings.) 

Determine the basic partitioning. 

Lets call the multiplicand matrix A, the multiplicand vector B, and 
the solution vector C. We block A by rows and C by elements. (We don't 
partition B at all; see the next point.) 

Determine any replication. 

We want a complete copy of Bon each environment, so we replicate it. 

Determine where any copies (used for communication) go. 

There is no inter-processor communication in this program (except, of 
course, for parameter distribution and collection, but that is totally auto
matic.) Thus, no copies are needed. 

The mappings that give the partitioning we want are BlockRow, all, and 
Block. (We looked at the predefined DINO mappings to find this - see Sec
tion 3.4.2.) Our declarations therefore look like: 

float distributed A[N] [N] map BlockRow; 
float distributed B[N] map all; 
float distributed C[N] map Block; 

• Step 3- vVrite a composite procedure to implement computation in the structure 
of environments. 

Write the code for the computation. 

This is almost trivial. vVe need a single loop to do the dot product. 
The only complication is that we must know which environment we are on 
in order to know which row of A and element of C to use in the compu
tation. There is a special constant we can declare that will have the value 
of our index in it, which is known as an environment index identifier (see 
Section 3.2). This makes our environment declaration look like this: 

environment node[N:id] 
{ 

} 

So here is our code on the node environments: 
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environment node[N:id] 
{ 

} 

composite mult(in A, in B, out C) 

{ 

} 

float distributed A[N] [N] map· BlockRow; 
float distributed B[N] map all; 
float distributed C[N] map Block; 

int I; 

C[id] = 0; 
for (I = 0; I < N; I++) 

C [id] += A [id] [I] * B [I] ; 

Notice that the distributed data, particularly the arrays A and C, is refer
enced using its global name, even though only part of either of these data 
structures is actually on each environment. DINO automatically handles 
this process. However, if you try to reference some part of a distributed 
data structure that is not on an environment, DINO isn't so nice. At this 
time, DINO does not check for these kind of mistakes (it would require run
time checking- see Section 6.2). At best, your program will crash. At worst, 
you will get incorrect results. So be careful of this. 

Insert any necessary receives. 

There aren't any. 

Insert the corresponding sends. 

There aren't any of these either. 

• Step 4 - Finally, write a host environment, containing a main() function to 
implement computation on the host environment. 

This turns out to be very straight forward. All of this is ordinary C code 
except the composite procedure call 

mul t (a[] [] , b [] , c [] ) # ; 

Note that since we are sending entire arrays (and not just pointers to them), we 
use ranges (see section 3.6). 

With this last part, our program is complete. Here is the DINO code for the 
whole thing: 
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I* 
* This does a matrix-vector multiply. The 
* limitations are that the matrix and vector 
* sizes must be equal to the number of processors. 

* * The basic algorithm is that a row of the 
* matrix is sent to each processor and a copy 
* of the vector is sent to each processor. 
* Each processor does a dot product with its 
* data and returns one element of the result. 

* 
*I 

#define N 16 

#include "dino.h" 

environment node[N:id] 
{ 

} 

composite mult(in A, in B, out C) 

{ 

} 

float distributed A[N] [N] map BlockRow; 
float distributed B[N] map all; 
float distributed C[N] map Block; 

int I; 

C[id] = 0; 
for (I = 0; I < N; I++) 

C [id] += A [id] [I] * B [I] ; 

environment host 
{ 

main() 
{ 

int I, J; 
float a[N] [N], b[N], c[N]; 

I* Initialize the array and 
the multiplicand vector to something. *I 

for (I = 0; I < N; I++) 
{ 

b [I] = 0. 1; 
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} 

for (J = 0; J < N; J++) 
a[I] [J] = (I + J) I 10.0; 

} 

I* Call the composite procedure. *I 

(void) printf("\nStarting the computation .... \n\n"); 
mul t (a[] [] , b [] , c [] ) # ; 

I* Print out the results. *I 

(void) printf("Results:\n"); 
for (I = 0; I < N; I++) 

{ 

if (I % 8 == 0) 
(void) printf("\n"); 

(void) printf (" %6. 2f", c [I]); 
} 

(void) printf("\n"); 
} 

2.2.4 Matrix-Matrix Multiply 

This example takes a somewhat more complex problem than the last one, namely a 
matrix-matrix multiply in which the sizes of the data structures can be a multiple 
of the number of processors available, and shows how to write the DINO program 
to compute the result. In addition to illustrating how to cope with the increased 
difficulty because (1) the basic algorithm is somewhat more complex than the one in 
the last example and (2) we are allowing multiple rows or columns in each processor, 
this problems illustrates how to cope with the difficulty caused by a problem that 
doesn't fit the DINO paradigm as well as other problems. 

• Step 0- Begin with a good understanding of the problem and a general approach 
to its solution. 

The general algorithm for a matrix-matrix multiply is simple- each elen1ent 
of the solution n1atrix is obtained by taking the dot product of the corresponding 
row and column of the two multiplicand matrices. Our concern here is to decide 
how to parallelize this problem. \Ve start off \vith three square matrices two 
multiplicands and the solution. Initially, we will try an obvious approach: block 
the first multiplicand by rows and send one block to each processor. If we block 
the answer in the same manner, we can just collect the answer at the end of the 
computation. 
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The second multiplicand is more of a problem. Initially, lets explore what 
happens if we block it by columns, and send one block to each processor. This 
allows us to compute part of the answer that is on each processor, but not all of 
it. A little thought and we realize that we will need all the columns to compute 
our part of the answer. Let us assume for now that we will block the second 
multiplicand by columns and use DINO's communications to make the blocks 
available to all processors. 

Now we might notice that although we are supposed to be thinking about 
the parallel algorithm in general, we are influenced by the physical constraints 
of the machine. As we do more of these problems, we will learn that we are 
also influenced by the nature of DINO. In reality, the process is an iterative 
one; we may have to go through the four "steps" several times to obtain a good 
understanding of a particular problem. 

If we draw a picture of our algorithm we get something like: 

X 

• Step 1 - Choose a structure of environments appropriate to the problem. 

Given the way we have decided to break up our problem, a vector of environ
ments seems appropriate. For efficiency, we will use a structure of environments 
the size of the machine (which we assume to be 16). So our code initially looks 
like this: 

environment node[P] 
{ 

} 

To make things easier to change, we will use macro definitions - P for the 
size of the machine (16), and N for the size of the arrays (2.56). 

If we think about this decision a little, it might seem to make more sense to 
use a torus instead of a vector. That way when we go to "shift" each block of 
colun1ns to the left, we would not have to treat the ends of the vector specially. 
However, this particular feature is not irnplemented in this version of DINO. 

• Step 2 - Determine how the principal data structures should be distributed 
among the environments in the structure you have chosen (specify the 1nappings.) 
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Determine the basic partitioning. 

This seems easy enough. Lets call our multiplicand matrices A and B 
and our solution matrix C. We block A and C by rows and B by columns. 

Determine any replication. 

There isn't any. 

Determine where any copies (used for communication) go. 

This may cause us problems. vVhat we really want to do is to take each 
block of columns and shift it one environment to the left for each iteration 
of the computation until every block has been to all of the environments. 
But this is a different sort of communication than the DINO paradigm is 
designed to support (see Section 3.7.1); DINO assumes that a particular 
piece of data has one "home" environment and other environments may 
have "copies" of the data. 

How could we get around this? Here are two ideas that might come to 
mind: (1) place a copy of each block on every processor, or (2) place a copy 
of each block on the processor to its left and use that to shift the blocks. 
Let us look at each of these ideas. 

The .first of these ideas is quite easy to implement and would be easy to 
write code for. But it has one serious drawback. The compiler must create 
storage for the whole B matrix on each environment if we do this. Since, in 
this example, we are concerned about storage, this is not acceptable. (Note, 
that this is equivalent to replicating B across all the environments.) 

The second idea at first seems somewhat more workable. vVe put a 
copy of each block on the environment to the left of it. Then when we are 
ready to communicate, we assign the value of the copy data to the home 
data and send it. (We can do this with a simple DINO statement like 

B[] [<my_first, my_last>]# = 
B[] [<left_first, left_last>]; 

assuming "my_first", "my_last", "left_first", and "left_last" are de
fined as we do later in this example to give the first and last columns in the 
current block and in the block to the left of us.) 

However, this leads to several difficulties that causes us to reject this 
approach: (1) we would have to be very careful how we reference the ele
ments of B since we are shifting the columns around but DINO is not aware 
of this so the global names we \Vould ordinarily use will not be correct (see 
more discussion on this point later); (2) we would have to handle the corn
munications at the ends of the environment structure specially since we are 
unable to declare it to be a torus; (3) this would complicate the comnninica
tions structure since there are two blocks already on each environment when 
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we start up - no con1munication needs to be done until the third iteration; 
and ( 4) we would double the storage necessary for Bon each environment. 

Well, when all else fails, there is a form of send and receive that puts 
everything in the hands of the programmer. We will fall back on that. We 
will tell the compiler that we are just going to partition B and then handle 
the communications ourselves. That means we have to be more careful 
that we get everything right. A future version of DINO may handle this 
particular problem better. 

The mappings that give the partitioning we want are BlockRow and BlockCol. (vVe 
looked at the predefined DINO mappings to find this information; see Section 3.4.2.) 
Our declarations therefore look like: 

float distributed A[N] [N] map BlockRow; 
float distributed B[N] [N] map BlockCol; 
float distributed C[N] [N] map BlockRow; 

• Step 3- Write a composite proced1tre to implement computation in the structure 
of environments. 

vVrite the code for the computation. 

Initially, this seems pretty straight forward. We have four loops: (1) 
the outermost keeps track of which column block of B we have, (2) the next 
one is the row of A that we are working on, (3) then there is which column 
within the particular column block of B we have, and ( 4) finally there is a 
loop for doing the dot product itself. There are several points to note: 

* Right away we realize we need some way of identifying which environ
ment we are on. Once again, we use an environment index identifier. 
This makes our environment declaration look like this: 

environment node[P:id] 
{ 

} 

* The non-standard communications we are using will cause us problerns 
in referencing data if we are not careful. Normally, distributed data is 
referenced by its global name. So, for example, on node [0] our first 
row is "0" and our last row is "15". Of course, we have to vvrite an 
expression that is good on any environment so we would write the first 
row as "id * N/P" andthelastrowas "(id + 1) * N/P- 1". 
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However, we have done something funny with the columns in B. 
We initially distributed them with a standard mapping, but then we 
"shift" them around "by hand" instead of having DINO do it. Since the 
compiler doesn't know what we are doing with the communications, it 
will no longer keep track of the correct global names of the columns of 
B once we do the first shift. We have to do that. So elements of B will 
have to be referenced differently than elements of A or C. 

vVhat we need to realize is that the current block of B will be ad
dressed in exactly the same manner on every iteration. This is because 
the compiler doesn't think that anything has changed. So, for exam
ple, when B is first distributed, the first column on node[1] is "id * 
N/P" ("16") and the last column on node[1] is "(id + 1) * N/P - 1" 
( "31") - the correct global names. After the first shift, the first column 
is still "id * N/P" and the last column is still "(id + 1) * N/P - 1", 
even though the correct global names are now "32" and "4 7". 

* For two reasons, it will be better if we define some intermediate values at 
the top of our program and compute them there: (1) it moves invariant 
expressions out of the loops (we know, good con1pilers are supposed to 
do this; but on the machines we've seen they don't), and (2) it makes 
the code much easier to read. So, for example, we define: 

my_first = id * N/P; 
my_last = (id + 1) * N/P - 1; 

to take care of identifying the first and last row (column) on our en
vironment. (We use the last instead of the last + 1 because we need 
that value in some range specifications.) For this problem, in addition 
to the two values above, we defined "left_first" (the first column on 
the environment to the left of us), "left_last" (the last column on the 
environment to the left of us), "left" (the index of the environment to 
the left of us), and "right" (the index of the environment to the right 
of us). These last four we will use for communications. 

Notice that it is easier to code some of these calculations if we 
first write them for the "middle," and then look at the edge cases. 
For example, if we just look at the middle, then we would define 
left as "left = id - 1; ". Then we look to see if there is any
thing different at either end. It turns out that at node(O), we want 
left to be equal to P - 1, not -1, so the definition of left becomes 
"left = (id == 0) ? (P - 1) : (id - 1) ;". 

So here is our code on the node environments (except for the communica
tions): 

environment node[P:id] 
{ 
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} 

composite mult(in A, in B, out C) 

{ 

} 

float distributed A[N] [N] map BlockRow; 
float distributed B[N] [N] map BlockCol; 
float distributed C[N] [N] map BlockRow; 

intI, J, K, L; 
int my_first, my_last, right, 

left_first, left_last, left; 

I* Compute the environment indices of the 
nodes on the right and left of me. *I 

right= (id == P- 1) ? (0) : (id + 1); 
left= (id == 0) ? (P- 1) : (id- 1); 

I* Compute the starting and stopping 
indices of the data in my block. *I 

my_first = id * NIP; 
my_last = (id + 1) * NIP - 1; 

I* Compute the starting and stopping indices 
of the data in the block of 
the node to the left of me. *I 

left_first = 
(id == 0) ? ((P - 1) * NIP) 

left_last = (id -- 0) ? (N - 1) 
((id- 1) * N/P); 
(id *NIP- 1); 

for (I = 0; I < P; I++) 
{ 

} 

I* Compute the values in the block of 
C[] [] that I currently have data for. *I 

for (J = my_first; J < my_last + 1; J++) 
for (K = 0; K < NIP; K++) 

{ 

} 

C[J] [K + ((id + I) * NIP) % N] = 0; 
for (L = 0; L < N; L++) 

C[J] [K + ((id + I) * NIP) % N] += 
A[J] [L] * B[L] [K + my_first]; 
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Insert any necessary receives. 

We want to put the receive as late as possible in the computation. We 
could do this by putting it just before the second loop (the "J" loop), but 
then we would have to put an if statement around it to insure that it only 
received from the second iteration on (since DINO initially distributes the 
data on the composite procedure call. Instead we elect to put it at the end 
of the "J" loop. Our receive will look like this: 

B[] [<my_first, my_last>] = 
B[] [<my_first, my_last>]# {node[right]}; 

We should note that we have to specify everything explicitly. In DINO, 
if we are using the default paradigm, the compiler does a lot of things 
for us. The statement "B [] [<my _first, my_last>] #;" would cause the 
compiler to look for a piece of data with that name (in this context, "name" 
includes the bounds) and which came from the "home" environment of that 
particular piece of data. \Vhen it found it, it would automatically store 
it in the correct location. \Vhen we go outside the default paradigm (by 
specifying the destination or source of the message), the programmer must 
specify it all explicitly. "All" includes: 

* Where the incoming data will be placed (the specification on the left 
hand side of the assignment). 

* The name of the incoming data (the part of the right hand side of the 
assignment that has the data name in it). 

* The environment that the data is coming from. 

Insert the corresponding sends. 

We have two concerns here: ( 1) we want to assure that there are sends 
corresponding to every receive in the program (otherwise we either generate 
extra messages which can cause problems in a large program or we never 
get a message we are looking for and the program locks up), and (2) we 
want to put the send as early as possible in the computation. 

The first of these can be complex, because there is not always a one-to
one relationship between the number of sends and the number of receives 
(in DINO you can send a range of data and the compiler will actually do a 
send to more than one environment; the same is true for receives). However, 
that is not the case here. So we just have to be sure there is a send for each 
receive. \Ve insure that if the send and receive are in the same loop. 

The second of these concerns is satisfied if we place the send at the 
beginning of the "J" loop. Then our send looks like this: 

B[] [<left_first, left_last>]#{node[left]} = 
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B[] [<my_first, my_last>]; 

Some points to notice on this: 

* We have to explicitly include the same things in this kind of send that 
we did in the corresponding receive. 

* The name of the data must be the same in the send as the receive. 
Because the expression for the range endpoints uses "id" (which is 
different on each environment), the expressions have to be different for 
the send and receive to give us the same name. This accounts for using 
"left_first" and "left_last" to send the data but "my_first" and 
"my_last" to receive it. 

The computation loop (with all communication statements inserted) looks like: 

for (I = 0; I < P; I++) 
{ 

I* First, send out the data that the node on 
the right of me will need next iteration. *I 

B[] [<left_first, left_last>]#{node[left]} = 

B[] [<my_first, my_last>]; 

I* Then, compute the values in the block of 
C[] [] that I currently have data for. *I 

for (J = my_first; J < my_last + 1; J++) 
for (K = 0; K < NIP; K++) 

{ 

C[J] [K + ((id + I) * NIP) % N] = 0; 
for (L = 0; L < N; L++) 

C[J] [K + ((id + I) * NIP) % N] += 
A[J] [L] * B[L] [K + my_first]; 

} 

I* Finally, receive the data from the node on 
the right that I need for the next iteration. *I 

B[] [<my_first, my_last>] = 

B[] [<my_first, my_last>]#{node[right]}; 
} 

The astute observer will notice that there is an extra send/receive pair in 
this loop. \Ve do not need to do the send/receive on the last iteration since there 
will not be a next iteration to use the new data. However, it would have required 
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two additional if statements to re1nove this, which for large matrices would slow 
the program down more than the additional send/receive pair. 

• Step 4 - Finally, write a host environment, containing a main{) function to 
implement computation on the host environment. 

This turns out to be very straight forward. All of this is ordinary C code 
except the composite procedure call 

mul t (a[] [] , b [] [] , c [] [] ) #; 

Note that since we are sending entire arrays (and not just pointers to them), we 
use ranges (see Section 3.6). 

With this final step, our program is done. Here is the DINO code for the complete 
program: 

I* 
* This program does a matrix-matrix multiply. The 
* only limitations are that the matrices must be 
* square and that their size must be a multiple of 
* the number of processors. 

* * The basic algorithm is to block the first matrix 
* by rows and send a block to each processor, and 
* block the second matrix by columns and send a block 
* to each processor. Each processor computes the 
* results for that sub-matrix for which it has data 
* and then the blocks of columns are all shifted to 
* the right one processor. 

* 
*I 

#define N 256 
#define P 16 

#include "dino.h" 

environment node[P:id] 
{ 

composite mult(in A, in B, out C) 

{ 

float distributed A[N] [N] map BlockRow; 
float distributed B[N] [N] map BlockCol; 
float distributed C[N] [N] map BlockRow; 
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int I, J, K, L; 
int my_first, my_last, right, 

left_first, left_last, left; 

I* Compute the environment indices of the 
nodes on the right and left of me. *I 

right= (id == P- 1) ? (0) : (id + 1); 
left= (id == 0) ? (P- 1) : (id- 1); 

I* Compute the starting and stopping 
indices of the data in my block. *I 

my_first = id * NIP; 
my_last = (id + 1) * NIP - 1; 

I* Compute the starting and stopping indices 
of the data in the block of 
the node to the left of me. *I 

left_first = 
(id == 0) ? ((P - 1) * NIP) 

left last = (id -- 0) ? (N - 1) 
((id- 1) *NIP); 
(id *NIP- 1); 

for (I = 0; I < P; I++) 
{ 

I* First, send out the data that the node on 
the right of me will need next iteration. *I 

B[] [<left_first, left_last>]#{node[left]} = 
B[] [<my_first, my_last>]; 

I* Then, compute the values in the block of 
C[] [] that I currently have data for. *I 

for (J = my_first; J < my_last + 1; J++) 
for (K = 0; K < NIP; K++) 

{ 

} 

C[J] [K + ((id + I) *NIP) Y. N] = 0; 
for (L = 0; L < N; L++) 

C[J] [K + ((id + I) * NIP) Y. N] += 
A[J] [L] * B[L] [K + my_first]; 

I* Finally, receive the data from the node on 
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the right that I need for the next iteration. *I 

B[] [<my_first, my_last>] = 
B[] [<my_first, my_last>]#{node[right]}; 

} 

} 
} 

environment host 
{ 

main() 
{ 

int I, J; 
float a[N] [N], b[N] [N], c[N] [N]; 

I* Initialize the two 
multiplicand arrays to something. *I 

for (I = 0; I < N; I++) 
for (J = 0; J < N; J++) 

{ 

a [I] [J] = 0. 1; 
'b[I][J] =(I+ J) I 10.0; 
} 

I* Call the composite procedure. *I 

(void) printf("\nStarting the computation .... \n\n"); 
mul t (a[] [] , b [] [] , c [] [] ) # ; 

I* Print out the results -- because the data 
we use generates the same answer for each element 
in any column, we only print out the first row. *I 

(void) printf("Results:\n"); 
for (I = 0; I < N; I++) 

{ 

if (I '/. 8 == 0) 
(void) printf("\n"); 

(void) print£(" '/.6. 2f", c [0] [I]); 
} 

(void) printf("\n"); 
} 

} 
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3 DINO - The Language 

This section contains the formal definition of DINO. It is broken down into the major 
categories of DINO constructs: program structure, environments, composite proce
dures, distributed data, reduction functions, ranges, and user defined mappings. If 
the meanings of the EBNF specifications used here are unfamiliar, an explanation can 
be found in Appendix A. 

3.1 Program Structure 

PROGRAM : := (ENVIRONMENT or MAPPING_FUNCTION or DATA_DEFINITION )+. 

A program consists of one or more environment declarations, zero or more 
mapping function declarations, and zero or more (distributed) data declarations. One 
of the environment declarations must be defined as a scalar environment with the 
name "host". This environment must contain a function, named "main", where 
execution starts. The remaining environment declarations generally define structures 
of environments that contain composite procedures which are invoked from the host. 

Distributed data structures that are declared at the program level are 
mapped to one or more environment structures in the program as specified by their 
mapping functions·. Ordinary data declarations can also be made at this level. If 
they are, independent copies are instantiated on every environment in the program. 
Niapping functions that are declared at the program level are accessible to all parts 
of the program. The normal C rule that requires definition before use is followed 
throughout DINO. 

3.2 Environments 

ENVIRONHENT :: = 
'environment' IDENTIFIER DIMENSION* 
'{' EXTERNAL_DEFINITION+ '}'. 

DIMENSION::= '['EXPRESSION [ '·' IDENTIFIER] ']'. 

EXTERNAL_DEFINITION ::= 
FUNCTION_DEFINITION I DATA_DEFINITION I MAPPING_FUNCTION. 

A structure of environments provides a virtual parallel machine, and a mech
anism for building parallel algorithms in a top down fashion. An environment may 
contain composite procedures, standard C functions, distributed data declarations, 
standard C data declarations, and mapping functions. Each environment within a 
given structure contains the same procedures, functions, and C data declarations, and 
shares the same distributed data declarations. 
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A structure of environments may be any single or multiple dimensional array. 
For example, the declaration 

environment grid [N:xid] [M:yid] { } 

specifies an N by .Nf array of virtual processors named "grid". In order to give 
each environment within a structure an identity that can be used in calculations, the 
programmer can declare constants that will contain the subscripts identifying that 
particular environrnent. These are referred to as environment index identifiers. In 
the above example, these are "xid'' and "yid". Most often these are used to refer 
to that environment's portion of a distributed data structure, for example a matrix 
element A[ xid] [yid]. 

A DINO program may contain any number of environment declarations. 
Typically only one, the host, is scalar, and the remainder are arrays. Multiple struc
tures of environments may be used when successive phases of a computation map 
naturally onto different parallel machines (in this case, generally only the environ
ments in one structure become active at once) or in functionally parallel programs 
(in this case the environments in multiple structures becon1e active at the sarne time; 
see Section 3.3). 

An environment can contain an arbitrary number of composite procedures 
and standard C functions. However only one task, or thread of control, may be active 
in an environment at a time. We refer to this as single task semantics. In addition, 
the only way to start a task executing in an environment other than the host is to 
call a composite procedure which resides in that environment. These two facts imply 
that there can not be any composite procedures in the host environment because 
procedure "main" is always active. 

A procedure executing in one environment can not directly reference data in 
another environment. Procedures in two environments can exchange information only 
if there is cooperation between the procedures, namely a remote read and write of a 
distributed variable, (Section 3.4.4) or the use of a reduction operator on a distributed 
variable (Section 3.5). These semantics and the single task semantics described above 
imply that there is is no hidden shared-memory emulation in DINO and also results 
in DINO programs being deterministic unless asynchronous distributed variables or 
explicit environment sets are used (see Section 3.4). 

Structures of environments are treated as blocks with respect to scope. 
Ordinary data that is declared within an environment structure is copied to every 
environment in that structure. Copies of ordinary data on separate environments have 
no relation to each other and can only be accessed within their own environments. 
Distributed data is treated as described in Section 3.4. The one exception to this 
scoping rule is cornposite procedures, which are always visible in the topmost scope. 
Thus con1posite procedures may be called from any environment except their own, 
I.e. recursive calls are not allowed. 

The DINO compiler creates one process for every environment in each struc
ture and rnaps these processes statically onto the actual parallel machine. This is 
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done in a manner that attempts to optimize the distance on the parallel computer 
between contiguously indexed environments in each structure. The mapping also at
tempts to optimize load balance as follows: if any structure of environments contains 
as many or more environments than there are actual processors, then the environ
ments are partitioned evenly over the entire parallel machine. When a composite 
procedure is invoked in a structure with more environments than processors, multi
programming occurs. This style of programming does not lead to optimal efficiency 
and may not run due to memory limitations (see Section 6.3). If there are two or 
more structures of one dimensional environments that together contain no more en
vironments than the total number of processors, then each environment is assigned 
to a unique processor. 

3.3 Composite Procedures 

declaration: 

FUNCTION_DEFINITIDN 
'composite' IDENTIFIER c(' [COMP_PARAMETER_LIST] ')' 
FUNCTION_BDDY. 

COMP_PARAMETER_LIST - ( [(in' I cout'] IDENTIFIER) I I 

call: 

STATEMENT 

( J , . 

IDENTIFIER'(' [EXPRESSION_LIST] ')' '#' [ c{' ENV_EXP c}' ] 
[ c : : ' STATEMENT ] . 

ENV_EXP ::=EXPRESSION. 

A composite procedure is a procedure which runs on each environment of a 
structure of environments (or a subset thereof) and thereby implements concurrency. 
A composite procedure consists of multiple copies of the same procedure, one resid
ing within each environment of a structure of environments. Calling the composite 
procedure invokes all of these procedures at the same time. Typically, each procedure 
works on a different part of some distributed data structure( s), resulting in a single 
program, multiple data (SPMD) form of parallelism. These distributed data struc
tures may either be defined in the structure of environments or globally or may be 
parameters to the composite procedure. Each procedure may also contain standard 
local data. vVe will first describe the various parts of composite procedure declaration 
and invocation statements, and then the order of events that occur when a composite 
procedure is invoked. 

The formal parameters of a composite procedure may be distributed vari
ables or standard variables. Forrnal parameters that are distributed variables may be 
preceded by the keywords "in" (call-by-value), "out" (call-by-result), or no keyword 
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(call-by-value/result). Formal parameters that are standard variables must be pre
ceded by "in" and are input parameters that are replicated in all the environments 
on which the composite procedure is called. 

A composite procedure call has the same syntax as ordinary C functions, 
except that arrays or subsections of arrays (Section 3.6) and remote references to 
distributed variables can be used as arguments, and the parameter list is followed by a 
"#" sign. All actual parameters corresponding to result and value/result parameters 
must refer to variables. Unlike C, DINO checks the number and types of actual 
parameters against the formal parameters in a composite procedure call. Composite 
procedures do not return a value. 

When a composite procedure is called, the invocation can be limited to a 
subset of the environments in the environment structure on which it is defined. This 
is accomplished using the optional ENV _EXP following the "#" sign, which returns 
a subset of environments on which the procedure is to be invoked (the "active-set"). 
The form of ENV _EXP is one or more environment names (or ranges see Section 3.6) 
connected by set union or difference operators "+" and "-". If this expression is not 
given, then the composite procedure is invoked on all of the environments in the 
structure. 

Functional parallelisn1 is achieved in DINO by the utilization of the optional 
":: STATEMENT" construct following a composite procedure call (this definition is 
recursive; see the EBNF specification in Appendix A). This STATE1v1ENT is executed 
concurrently with the composite procedures specified by the call. It can be either 
another composite procedure call utilizing a different structure of environments (or a 
disjoint subset of the same structure), or a standard C staternent that is executed on 
the host. The program blocks until both the composite procedure and the concurrent 
statement complete execution. 

The keyword "caller", when used within a composite procedure, is the en
vironment which invoked that composite procedure. This may be used when a com
posite procedure is executing concurrently with code on the invoking environment, 
as described in the previous paragraph, and wants to communicate with the pro
cedure that invoked it via explicit reads and writes of global distributed data (see 
Section 3.4.4). 

Now we describe in detail the events that occur when a composite procedure 
is invoked. First, the ENV _EXP expression is evaluated if it is given. This defines an 
active-set of environments as described above. Only procedures and environments in 
the active-set are used in the rest of the sequence. Second, all of the actual parameters 
that correspond to value and value/result formal parameters are evaluated. If any 
of these actual parameters contains a "#" operator then a remote read is executed 
to get the value (see Section 3.4.4). Third, the values of the actual parameters are 
assigned to the formal parameters and sent to the appropriate environments. For for
mal parameters that are not defined as "distributed", the actual parameter value is 
sent to each environment in the active-set. If the formal parameter is defined as ''dis
tributed" then the actual parameter value is distributed to each environment that it is 
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mapped to (but lirr1ited to the active-set). Fourth, the procedure is actually called at 
each environment in the active set. At the same time, the concurrent STATENIENT, 
if any, is executed in the calling environment (possibly resulting in one or more ad
ditional composite procedure calls on different environments). Fifth, after. all these 
procedures/STATEMENTs have completed executing, the result and value/result pa
rameters are returned. Each element of a result parameter is returned from exactly 
one environment, its "home" environment (see Section 3.4.3). If any of these actual 
parameters contains a "#" operator then a remote write is be executed. Finally, the 
calling environment continues execution after the concurrent STATEMENT. 

3.4 Distributed Data 

Distributed data is used to map data structures onto the structures of environments 
in a DINO program. It provides the mechanism for communication between envi
ronments, which is accomplished by using distributed variables as formal parameters 
to composite procedures, and by remote references to distributed variables. It also 
allows the programmer to maintain a global view of these data structures (in most sit
uations; see Section 2.2.4) and joins with composite procedures to produce an SPMD 
model of computation. 

Currently, the types of data structures that can be distributed are arrays 
of any dimension. DINO provides a rich mechanism for specifying the mappings of 
such data structures onto structures of environments, including many different one
to-one and one-to-many mappings, and also provides efficient implementation of the 
communication that can result through the use of these variables. The declaration of 
distributed data is discussed in Section 3.4.1. Section 3.4.2 discusses the predefined 
mapping functions in the include file "dino.h". In Section 3.4.3, the concepts of home 
and copy data are discussed. The use of distributed data, primarily remote references 
for comn1unication, is discussed in Section 3.4.4. 

3.4.1 Declaring Distributed Data 

distributed data declaration: 

DECLARATOR : : = 

[ 'asynch' ] 'distributed' DECLARATOR 
( '[' CONSTANT_EXPRESSION (]' )+ MAPPING. 

MAPPING :: = 

(map' ('all' I IDENTIFIER I (( IDENTIFIER IDENTIFIER) I I 'map')). 

Distributed data declarations follow standard C syntax, except that the 
keyword "distributed" precedes the narne of the distributed variable, and the keyword 
"map" followed by the name of a mapping function follows it. An example is 

float distributed A[N] [N] map BlockRow; 
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Distributed data may be declared at any level of a DINO program, and follows stan
dard C scoping rules. The MAPPING portion of a distributed data declaration that is 
not contained in an environment declaration must use the "IDENTIFIER IDENTIFIER 
II 'map'" syntax, where the second identifier in each pair is an environment name: 

float distributed A[N] [N] map grid BlockBlock map node BlockRoY 

The mapping function(s) are either taken from DING's library of predefined mapping 
functions, as is the case with BlockRow and BlockBlock above, or is defined by a 
mapping function definition statement (see Section 3. 7.2). 

3.4.2 Predefined Mappings 

DINO provides a set of predefined mapping functions for mapping one and two dimen
sional (hereafter "lD" and "2D") data structures onto lD structures of environments, 
and 2D data structures onto 2D structures of environments. The predefined lD to 
lD mappings are 

Block, Wrap, and BlockOverlap. 

They can be used to map any array of N elements onto an array of P environments, 
and work in a fairly obvious way. If l'l is a multiple of P, then Block maps the first 
N / P data elements onto the first environment, and so on; if N < P then the first 
N environments contain one element each and the last N - P contain none, while if 
N > P but N is not a multiple of P, then the first N mod P environments contain 
an extra element. Wrap maps each element i ( i = 0, · · ·, N - 1) to environment 
[i mod P]. BlockOverlap does a Block mapping and in addition, maps the first 
and last elements of each block (except elements 0 and N - 1) to the next lower 
and higher environment, respectively. This extra mapping is referred to as an ove·rlap 
(One-sided overlaps and wider overlaps are also possible using user-defined mappings; 
see Section 3. 7). 

The predefined mappings for mapping 2D (Jvf x N) data structures to lD 
( P) environment structures are 

BlockRow, BlockCol, WrapRow, WrapCol, BlockRowOverlap, 
and BlockColOverlap. 

They work identically to the above lD to lD mappings except that rows or columns 
are used in the place of individual elements. For mapping 2D (j\11 x JV) data structures 
onto 2D (P x Q) environment structures, the predefined mapping functions are 

BlockBlock, FivePt, and NinePt. 
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BlockBlock divides the NI x N array into sub-arrays of size A1 / P x N /Q on each 
environment. FivePt is a BlockBlock mapping with overlaps in the four directions; 
in the case when M = P and N = Q it reduces to the standard five point star (element 
[i][j] mapped on to environments [i- 1](j], [i + 1][j], [i](j], [i][j- 1], and [i][j + 1], 
and visa versa.) NinePt is a FivePt mapping where in addition the corner elements 
are included in the overlap (in the M = P, N = Q case these are [i - 1][j - 1], 
[i- 1](j + 1], [i + 1][j 1], and [i + 1][j + 1].) Finally, the mapping keyword all 
maps all the elements of any dimensional data structure onto each environment of 
any dimensional structure of environments. 

3.4.3 "Home" and "Copy" Data 

Implicitly associated with each mapping function is the specification of one "home" 
environment, and zero or more "copy" environments, for each element of the dis
tributed data structure. These constructs have an effect when distributed data struc
tures are parameters to composite procedures (see Section 3.3) and in remote refer
ences to distributed data (Section 3.4.4). If an element of a distributed data structure 
is mapped to only one environment, this is its home. If it is mapped to multiple en
vironments, this must be done using either overlaps or the "all" construct. With 
overlaps, the home environment is the environment that the data element would be 
mapped to if the overlap term was omitted, while the additional environments that 
the overlap term causes it to be mapped to are its copy environments. If an element is 
mapped using "alF', then we arbitrarily consider the lowest subscripted environment 
to be its home and the remainder to be copy environments, but this distinction is 
generally unimportant since such variables are usually either input-only parameters, 
or uniformly shared variables internal to the composite procedure. The semantics 
of home and copy environments assure that DINO programs are deterministic in the 
default case (see Section 3.4.4). 

3.4.4 Using Distributed Data 

EXPRESSION ::=PRIMARY c#) [ c{' ENV_EXP [ cfrom' EXPRESSION] c}) ] . 

ENV_EXP : := ccaller' I EXPRESSION. 

There are three different ways to use a distributed variable. The first is as 
a formal parameter to a composite procedure call, as discussed in Section 3.3. The 
other two are by local and remote references (either reads or writes), appearing as 
expressions in any standard C statement. 

A local reference of a distributed variable uses standard C syntax and is the 
same as referencing any regular variable. The value of the variable is retrieved fron1, 
or stored into, the local copy. This implies that the variable being referenced must 
be mapped to the environrnent in which the reference is n1ade. 

A re1note reference, either a read or a write, involves communication be
tween environments. It is indicated by the distributed variable name (and subscripts, 
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if any), followed by a "#", optionally followed by an explicit specification of the set 
of environments to communicate with for this reference. If this set is not provided 
explicitly, it is defined implicitly by the mapping function to be the set of all envi
ronments to which the given subrange of the· distributed variable is mapped. The 
implicit environment specification is usually sufficient, and is considered preferable 
because it is more structured and because there is less likelihood of coding error. 

We first describe the semantics of remote references in the case where the 
environment set is specified implicitly (by the associated mapping function). These 
references basically follow the convention that the home environment produces new 
values and the copy environments consume them. 

If the remote reference is a read and the current environment is a copy 
environment, then DINO looks for the first (least recent) value of that variable that 
has been received from the home environment but not yet utilized (a message buffer 
is maintained, and the oldest message from the home environment with a value of 
that variable is used, and then removed from the buffer.) If no new value of that 
variable has been received from the home environment, the reading process blocks 
until one is received. When the new value is available, it is used to update the local 
copy of the variable, and then the remainder of the expression in which the remote 
read is located is evaluated using the local copy. If the remote reference is a read and 
the current environment is a home environment, then the remote read is the same 
as a local read (with some performance degradation,) and may produce a run-time 
warning message (see Section 6.2.) If the current environment is neither a home nor 
a copy environment, then a remote read is an error. 

A remote write to a distributed variable using an implicit environment set 
works as follows. If the current environment is the home environment of that variable 
and there are associated copy environments, then the value being assigned to that 
variable is used to update the local copy (since the write occurs in an assignment 
context), and also is sent to all the copy environments. If the current environment is 
the home environment and there are no associated copy environments, then the remote 
write is treated as a local write (again, there is some performance degradation). If 
the current environment is not the home environment, then an implicit remote write 
1s an error. 

As example of remote reads and a remote write, consider a 2-dimensional 
smoothing algorithm where an N x M distributed array of data A[][] is mapped onto 
an N x .NJ array of virtual processors "grid", with each A[i][j] mapped onto grid[i][j] 
(its home environment) and the 4 adjoining environments (this is the mapping func
tion FivePt.) Then the statement 

A[i] [j]# = (A[i-1] [j]# + A[i] [j-1]# + A[i] [j] 
+ A[i] [j+l]# + A[i+1] [j]#)/5; 

will receive values of the 4 adjoining elements of A[][] from their h01ne environments, 
calculate the average of these four values plus the local value, assign this new value 
to the local copy of A[i][j], and send it to the 4 adjoining environments. 
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If the programmer wishes to send or receive distributed variables in a dif
ferent manner than by these implicit rules, a set of environments - ENV _EXP in the 
EBNF specification above - can be specified after the "#" sign. ENV _EXP uses the 
same syntax as was discussed for it in Section 3.3. For example, 

grid[][]- grid[xid][yid]- grid[1] [2] 

specifies all the environments in the grid environment structure except the environ
ment that the statement is executed in and grid[l] [2]. In contrast to remote references 
with implicit environment sets, the distributed variable does not need to be mapped 
to the environment where the statement is executed. 

A remote read with an explicit environment set is processed as follows. The 
process looks for the oldest unutilized value of that distributed variable that has been 
received from any node in the environment set, including itself if it is in the set, and 
blocks if no new value is available. Once a value is received, it is used in evaluating 
the remainder of the expression. (Note that the execution n1ay be non-deterministic 
if there is more than one environment in the set.) 

For a remote write with an explicit environment set, the new value of the 
variable is sent to all of the environments in the environment set, including itself 
if it is in the set. Note that explicit references to variables that are mapped to the 
local environment have different semantics than in the implicit case: they do generate 
messages and do not automatically update the local copy or default to local reference. 

After a remote read where the environment set was specified explicitly and 
contained more than one element, it may be unknown which environment the new 
value came from. In order to obtain this information, the "from" construct may be 
used. The keyword "from" is appended to the environment set specification, and is 
followed by a variable of type "envvar". For example, the statements 

envvar who; 

w = x # {grid[][] from who}; 

y # {who} = z; 

receive the value of x from some environment in the structure "grid", assign the name 
of this environment to who, and later send the value of z to the environment that the 
value of x was received from. 

All of the above discussion pertains to "synchronous" distributed variables, 
\vhich are the default in DINO. Distributed variables can also be declared to be "asyn
chronous" by placing the word "asynch" before "distributed" in their declarations. 
The difference between synchronous and asynchronous variables is that a remote read 
to an asynchronous variable uses the most recent value and does not block. If several 
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values of the variable have been received since the last remote read, then the most 
recently received value is used to update the local copy and the remaining values are 
discarded. If no new value has arrived since the last remote read, then the local copy 
is used. in keeping with these rules, an explicit remote read of an asynchronous vari
able requires that the variable be mapped to the current environment. The remaining 
semantics of remote references to asynchronous variables, including all the semantics 
for a remote write, are the same as for synchronous distributed variables. 

By making the distinction between synchronous and asynchronous commu
nication part of the distributed variable declaration, as opposed to a property of the 
statement that invokes communication, it is possible to transform a DINO program 
from a synchronous to an asynchronous variant by simply changing one or a few 
declarations. Clearly, the execution of algorithms containing asynchronous variables 
may be non-deterministic. 

3.5 Reduction Functions 

PRIMARY : := 

REDUCTION c(' EXPRESSION [ ','EXPRESSION] ')' '#' 
[ c{' ENV_EXP '}' ] . 

REDUCT I ON : : = 
'gsum' I 'gprod' I 'gmin' I 'gmindex' I 'gmax' I 'gmaxdex'. 

One type of calculation that involves communication is so fundamental to 
parallel computation, and departs sufficiently from simple patterns of communication, 
that we have included it as a parallel language construct. This is a reduction opera
tion, which involves performing a commutative operation (e.g. +, *, min~ max) over 
one value from each environment and returning the result to all the environments. 
DINO provides the reduction operators "gsum", "gprod", "gmax", and "gmin" that 
return the sum, product, maximum, or minimum of the arguments specified on each 
environment. For example, if error and maxerror exist on each environment in the 
current active set, then the statement 

maxerror = gmax(error); 

assigns the maximum of all the local values of error to each local copy of 
maxerror. DINO also provides two reduction functions, "gmaxdex" and "gmindex", 
that take two parameters; the first is the value to be reduced and the second is (a 
pointer to) an integer index. This is a user-defined index and is not related to any 
environment index; The programmer is responsible for assigning a unique index num
ber to each environment participating in the reduction. vVhen these functions return, 
the second parameter returns (points to) the index of the maxirnum (or minimum) 
value. 
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The reduction functions can be called with an explicit "active set" (using the 
optional ' {' ENV _EXP '}') in the same way that a composite procedure or a remote 
data reference can. The active set specifies which environments will participate in 
the reduction. The first argument of a one argument reduction may evaluate to a 
(sub )array, rather than a scalar, in which case the reduction operation is performed 
individually over each component of the (sub )array. 

It is implicit in a reduction call that synchronization between all participat
ing environments is involved, and that all participating environments must reach the 
call, otherwise execution is blocked. The environments do not necessarily have to 
execute identical lines of code, but simply the same operation with matching param
eter types. Reductions are implemented using efficient, tree-based computation and 
communication. 

3.6 Subarrays and Ranges 

PRIMARY::= PRIMARY ( '[]' I '[<' EXPRESSION',' EXPRESSION c>]' ). 

To use most distributed memory multiprocessors efficiently, it is important 
to send messages consisting of blocks of data, rather than multiple messages consisting 
of single data elements, whenever possible. In order to efficiently move blocks of data 
between environments, DINO provides the ability to specify subarrays, and to use 
arrays and subarrays in simple assignment statements, which may include remote 
reads and writes ( C provides no subarray facilities.) 

A rectangular subsection of an array is specified by giving the first and the 
last element for each axis, e.g. "A [ <i ,j>] ". The index numbers are separated by a 
comma and enclosed in angle brackets. The default value, specified by "[] ", is all 
elements of the array along the indicated axis. 

Arrays or subarrays, including remote references to them, may be used in 
assignment statements of the form 

The size and shape of the operands in the statement must be consistent, and the 
indices of the left and right operand are mapped to each other in the obvious man
ner. If the left operand is a remote reference to a distributed array, then the target 
environments of each element depend on the mapping function. In this way an entire 
array can be distributed over a set of environments in a single write, with different 
portions possibly going to different environments. Conversely, if the right operand is 
a remote reference to a distributed (sub )array, this (sub )array is gathered from one 
or more environments in a single read. 

DINO also allows the use of arrays and subarrays as parameters for com
posite procedures and reduction functions, and allows ranges to be used in specifying 
environment sets. 
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3.7 User-Defined Mappings 
3.7.1 Mapping Philosophy 

There are two general categories of information that programmer specified mappings 
in DINO include: information about data distribution, and information about com
munication patterns. That is, a mapping function may serve two purposes. It allows 
the compiler to statically map the data to the processors. It also allows the compiler 
to do a static analysis of communications resulting in more efficient communication. 

The obvious purpose for a mapping is to allow the compiler to partition the 
data among the processors. While this may seem to simply be a matter of dividing a 
data structure up into "pieces" and sending each "piece" to a processor, in DINO it 
is somewhat more complex. It is often useful to have the same data value available 
to rnany processors. Although this can be implemented by having the programmer 
communicate the needed value once the data has been partitioned, it may be more 
efficient and easier for the programmer to think about the problem if the mapping 
allows for replication of the same "piece" on many processors. 

Related to the concept of replicating data so that more than one processor 
may make use of it is the fact that the programmer may wish to update that value 
during the program. For this purpose, DINO mappings may also be used to provide 
some high level information about communication patterns (using overlaps.) In order 
to have a communication, the compiler must know "what" piece of data is being 
communicated, "when" is it being communicated, "where" is it being communicated 
to (from), and "how" it is communicated. DINO allows the programmer to specify 
what data piece is to be communicated and when (lexically) it is to sent and received. 
The compiler can then determine, based on the mapping, where it is to go to (or 
come from) and how the communication will be handled (all the underlying detail of 
messages). 

To do this, DINO uses the following paradigm: First, when a data structure 
is mapped onto an environment structure, a partition is implicitly defined. That 
is, each "piece" of data is assigned to one processor that "owns" the data. We call 
this the "home" processor for that piece of data. Second, any other processor that 
will need to use that piece of data is assigned the same piece, but this processor is 
designated as a "copy" processor for that piece of data. Then, all sends and receives 
for this piece of data are from the home processor to all its copy processors. vVith this 
paradigm a parallel program is guaranteed to be deterministic, and communication 
patterns can be described simply by specifying the copy processors, if any, for each 
piece of data. This default paradigm can be overridden by the programmer but it is 
sufficient for n1any numerical algorithms. 
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3. 7.2 Mapping Definition 

MAPPING_FUNCTION ::= 
cmap' IDENTIFIER'=' ( c[' MAP_TYPE [ALIGN] c]' )+. 

MAP_TYPE : := 'all' 'compress' I BLOCK_MAP I WRAP_MAP. 

BLOCK_MAP : : = 
'block' [ 'overlap' [ EXPRESSION]] [ ccross' 'axis' EXPRESSION]. 

WRAP_MAP : := cwrap' [ EXPRESSION]. 

ALIGN : := 'align' caxis' EXPRESSION. 

We have attempted to provide a general mapping mechanism that still allows 
efficient implementation at compile time. Our mapping specification describes how 
to map arrays of data onto arrays of processors and is based on describing how each 
axis of the data structure is mapped to the processor structure (a sub-specification). 
By having an (almost) orthogonal set of sub-specifications, a powerful mapping spec
ification can be constructed out of a simple set of primitives. 

A mapping specification is defined in three steps. First, the programmer 
specifies how each axis of the data structure is matched to one or more axes of the 
structure of processors. Second, the programmer specifies how the data on that axis 
is distributed among the processors defined in the first step. There are three basic 
choices for this step, complete replication, partition, or partition with copies. Third, 
if partition with copies is desired, the programmer specifies how the copies of data 
are distributed to other processors. 

In the first step, matching axes of the data structure to axes of the struc
ture of processors, there are only two primitives - "compress" and "align". vVith 
compress, the programmer specifies that this data axis will not be distributed. This 
primitive is used if the data structure has more axes than the structure of processors. 
With align, the programmer spec.ifies that a particular axis in the data structure 
should be mapped to a particular axis in structure of processors. If this primitive is 
omitted for an axis in the data structure, the obvious default of mapping the next 
available data axis to the next processor axis is used. (A data axis might not be 
available because it has been designated as "compress".) 

For example, if the programmer is mapping a two dimensional matrix to a 
vector of processors, a n1apping specification of the form: 

[ . . . ] [compress] 

will distribute rows to the processors and a specification of the form: 

[compress] [ . . . ] 
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will distribute columns. The specific mapping of the rows or columns will depend 
on what goes in the [ . . . ] sub-specification, something that the programmer 
determines in steps two and three. 

If the programmer is mapping a two dimensional matrix to a two dimensional 
structure of processors, the mapping specification: 

[ . . . align 1] [ . . . align 0] 

would cause the second axis of the data structure to map to the first axis of the 
structure of processors, and the first axis of the data structure to map to the second 
axis of the structure of processors. In effect this allows the matrix to be transposed 
and placed on the processors. 

In the second step, the distribution of a data axis to a processor axis, there 
are three mapping primitives- "all", "block", and "wrap". Using the first of these, 
the programmer can specify that the data axis be completely replicated across the 
associated axis of the structure of processors. With the second or third, the program
mer can specify that the data axis is distributed in either one of two ways blocked 
or wrapped. Block mappings assign one (approximately) equal sized contiguous piece 
of the data structure to each processor. Wrap mappings assign every Pth position on 
the data axis to the same processor (assuming P processors). Wrap is essentially a 
variant on block that is used for improved load balancing in a wide variety of parallel 
numerical algorithms. The programmer may also specify the width of the wrap. 

If, in our first example, the matrix is N by N and there are P processors 
with N = 4P, then a mapping specification with: 

[block] [compress] 

would distribute four contiguous rows to each processor. Alternatively, 

[compress] [wrap] 

would put column 0, P, 2P, ... on processor 0, etc. 

In the third step, the specification of a distribution for copies, there are two 
mapping primitives that the programmer can use- "overlap" and "cross". "overlap" 
specifies that copies of neighboring data points on that axis will be available on 
each processor. The programmer can specify the direction and depth of the overlap. 
"cross" allows the programmer to specify that copies will be available for data points 
that are found in the intersection of two or more overlaps - in effect making copies 
of neighboring data points along diagonals available on each processor. This might 
be used, for example, in an algorithm that requires a nine point stencil. 

For example, if a vector [ x 0 x 1 x 2 x 3 ] is distributed across a vector of four 
processors with the mapping specification 

[block overlap 1,1] 

37 



the four processors will have the following elements: 

processor 0 
processor 1 
processor 2 
processor 3 

[ Xo XI ] 

[ Xo XI X2 ] 

[ XI X2 X3 ] 

[ x2 X3] 

The notation "1, 1" specifies overlaps of one element to the left and right respectively. 
More precisely, the first "1" means that each environment will have a single element 
for the environment with the next lower index. The second "1" means that each 
environment will have a single element from the environment with the next lower 
index. Note that the "leftmost" and the "rightmost" processors will receive 1 element 
that is a copy instead of two, i.e., there is no wrap around. The home processor of 
each data element is the processor it would be mapped to if the overlap were omitted, 
in this case processor i for Xi. 

If we distribute an N by N matrix across anN by N structure of processors 
with the following mapping specification: 

[block overlap 1,1 cross 1] [block overlap 1, 1] 

then the data on each processor (except the edge processors) will have the following 
pattern (nine point stencil): 

where D is the data for that processor, N, S, E, and vV are copies of data from four 
neighboring processors due to the overlap primitive, and the c's are copies of data 
from the four diagonal neighbors due to the cross primitive. 

Using this structured approach allows us to combine a rather small set of 
primitives for each data axis to generate a very large set of mappings from data 
structures to processors. For example, if an N by N matrix is to be distributed 
across a vector of N processors so that each processor received a column plus copies 
of the two columns to the left of "its" column, the mapping would be: 

[compress] [block overlap 2,0] 

The "leftmost" and the "next leftmost" processors will receive, respectively, 0 and 1 
columns that are copies. 

As a final example, if an N by N matrix is to be distributed across a vector 
of P processors, where N is 16 and P is 4, so that each processor receives copies of 
the closest row from the two processors next to it, the mapping would be: 

[block overlap 1,1] [compress] 
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The resulting data structure on a processor (for an interior processor) would be: 

u u u u u u u u 
D D D D D D D D 
D D D D D D D D 
D D D D D D D D 
D D D D D D D D 
d d d d d d d d 

where D is the home data for that processor, and u and d are copies of data from the 
processors above and below respectively. 

4 DINO Examples 

This section contains a number of DINO examples, which illustrate most of the fea
tures of DINO. Each example is listed on its own page, with the path name of the 
file, relative to the examples directory, at the top of the page. An Index of Features 
is provided which allows you to find an example program containing the feature you 
want to look at. The Index lists only one example for each feature, even though some 
features may be illustrated in many examples. 

4.1 Index of Features 

Environment structures 
Scalar (the host) 
One dimensional 
Two dimensional 
One environment other than the host 
Multiple environments other than the host 
Environment id's . . . . . . . . . . . 

Composite procedures 
Declarations 

One composite procedure per environment 
Multiple composite procedures per environment . 
Formal parameters 

In .. . 
Out ..... . 
In/Out . . . . 
Distributed parameters 
Non-distributed parameters 

Calls 
Implicit call (to all environments) . . . . . 
Explicit call (using environment expressions) 
Actual parameters 

Corr1plete 
Ranges 

Distributed data 

hellowor ld /ex 1. d 
helloworld/ exl.d 
helloworld/ ex2.d 
helloworld/ exl.d 
helloworld/ ex4.d 
helloworld/ exl.d 

helloworld/ exl.d 
helloworld/ ex3.d 

matvec/exl.d 
mat vee/ exl.d 

smoothing/ ex l.d 
matvec/* 

smoothing/ ex l.cl 

helloworld/ exl.d 
<not ill'Ustrated> 

rr1atvec/ exl.cl 
<not illustrated> 
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Mapping functions 
Shape 

lD onto lD 
2D onto lD · 
2D onto 2D 

Axis alignment 
All mapping (global) 

As input .... . 
As output ... . 

Individual axis mappings 
Block mapping 

One element per environment . . . . . . . . 
Multiple, even #'s of elements per environment 
Uneven #'s of elements per environment 
Overlaps ............. . 

vVrap mapping 
Uneven #'s of elements per environment 
Wraps of size greater than 1 

All mapping (single axis) 
Cross mappings . . . . . . . 
Pre-defined mapping functions 

Block .... 

matvec/exl.d 
matvec/exl.d 
matvec/ex7.d 

<not illustrated> 

matvec/exl.d 
<not illustrated> 

matvec/exl.d 
matvec/ex2.d 
matvecjex3.d 
smoothing/* 

complex/lu.d 
<not illustrated> 

matvec/ex7.d 
smoothing/ ex5.d 

matvec/exl.d 
<not illustrated> 
<not illustrated> 

matvec/exl.d 
smoothing/ exl.d 
<not illustrated> 

matvec/ex5.d 
sn1oothingjex2.d 
. . complex/lu.d 

matvec/ex7.d 

BlockOverlap . 
Wrap ..... 
BlockRow .. 
BlockRowOverlap 
Wrap Row 
BlockCol .... 
Block Col Overlap 
WrapCol .. 
BlockBlock . 
FivePt ... 
NinePt 

User-defined mapping functions 
Local reference to distributed data 

Array access . 

sn1oothing/ ex3.d 
smoothing/ ex5.d 

. . matvec/ex5.d, smoothing/ex6.d 

Scalar access . . . . . . . . 
Communications 

Synchronous Communications 
Implicit case . . . . . 
Explicit case . . . . . 
Scalar communications 
Vector communications 

Con1plete din1ension 
Ranges ..... 

. complexjlu.d 
matvec/exl.d 

smoothing/ ex l.d 
. . complex/lu.d 
<not ilhLstrated> 

sn1oothing/ ex l.d 
smoothing/ ex3.cl 

40 



Asynchronous Communications . . . . . . . . . . . . smoothing/ ex5.d 
Scoping 

Distributed data declared as a parameter . . . . . . . mat vee/ exl.d 
Distributed data declared inside a composite procedure . complex/lu.d 
Distributed data declared inside an environment structure complex/block.d 
Distributed data shared between two or more environment structures <not 
illustrated> 

Reductions 
Functions 

gsum() {one parameter variety} . 
gmaxdex() {two parameter variety} 

Set to reduce over 
Complete environment . . . . . . . . . . . 
Explicit subset (using environment expressions) 

Data to reduce over 
Scalar . . . . . 
Vector ..... 

Miscellaneous features 
:: operator . . . . 

Environment expressions 
Construction of envexp's 

Ranges 
+ operator . . . . . 
-operator . . . . . . 

In composite procedure calls 
In reductions . . . . . . 
In explicit communications 
Environment variables 

Declaration 
Assignment 
From construct 
Caller variable 

Comparison of environment expressions 
Linking to external functions 

Include directives . . . 
Calling external C files 
Using dino.h . . . . . 

Ranges 
In array reads and writes 
In environment expressions 
In communications 

mat vee/ ex5.d 
. . . . . ??? 

mat vee/ ex5.d 
mat vee/ ex7 .d 

<not illustrated> 
mat vee/ ex5.d 

helloworld/ ex5.d 

mat vee/ ex7 .d 
<not illustrated> 

. . complex/lu.d 
<not illustrated> 

mat vee/ ex7 .d 
. . complex/lu.d 

<not illustrated> 
<not illustrated> 
<not illustrated> 
<not illustrated> 
<not illustrated> 

complex/block.cl 
mat vee/ ex4.d 
mat vee/ exl.d 

. complex/lu.d 
mat vee/ ex7 .d 

smoothing/ ex l.d 
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4.2 "Hello World" 

The programs in this section simply print out messages from the environments created 
in the programs. They illustrate how to declare environment structures and simple 
composite procedures. 

Example 1.1: examples/helloworld/ex1.d 

I* This program prints out messages from a one dimensional environment 
* structure. *I 

#define P 16 

environment node[P:id] { 

composite go() 

{ 

I* ==> Declaration of a one dimensional 
environment structure of size P, 

environment index identifier id, 
tells WHICH environment we are. 

I* ==> Declaration of a composite 
procedure with no parameters. *I 

printf ("node[%d] says hello\n 11
, id); 

} 

} 

lNith an 
which 

*I 

environment host { I* ==> Declaration of a scalar environment 
structure 11 host 11 is required in 

} 

all DING programs. *I 

void main () I* ==> Execution starts at function 
"main" within environment "host" 
in all DING programs. *I 

{ 

} 

printf ("host says hello \n 11
) ; 

go()#; I* ==> Call of a composite procedure 
(indicated by the "#" sign). *I 

printf ("host says goodbye\n 11
); 
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Exan1ple 1.2: examplesjhelloworldjex2.d 

I* This program prints out messages from a two dimensional environment 
* structure. *I 

#define Pi 3 
#define P2 4 

environment node[Pi:idi] [P2:id2] { 

composite goO 

{ 

I* ==> Declaration of a two dimensional 
environment structure of size Pi by P2, 
declaring environment index indentifiers 
idi and id2. *I 

printf ("node ['l.d] ['l.d] says hello \n", idi, id2) ; 

} 

} 

environment 

void main 
{ 

printf 
goO#; 
printf 

} 

} 

host { 

() 

(''host 

(
11 host 

says 

says 

I* ==> Uses the environment index identifiers 
.idi and id2. *I 

hello \n '') ; 

goodbye \n '') ; 
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Exan1ple 1.3: exan1ples /helloworld/ ex3.d 

I* This program prints out messages from two composite procedures, inside of a 
* single one dimensional environment structure. *I 

#define P 14 

environment node[P:id] { I* ==> The size of an environment structure 
does not have to be a power of two *I 

} 

composite part1() 

{ 

printf ("node['l.d] says hello from part10#\n'', id); 
} 

composite part2() 

{ 

I* ==> Multiple composite procedures may be 
declared within the same environment 
structure. However, only one of these 
may be active at any one time. *I 

printf ("node ['l.d] says hello from part2 () #\n", id); 
} 

environment host { 

} 

void main () 

{ 

} 

printf ("host says hello\n"); 

part10#; 
part20#; I* ==> Part1()# must finish execution before 

Part2()# begins. *I 

printf ("host says goodbye\n"); 
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Example 1.4: examples/helloworld/ex4.d 

I* This program prints out messages from two composite procedures, inside of 
* two different one dimensional environment structures. *I 

#define Pi 8 
#define P2 6 

environment node1[P1:id] { 

composite part1() 
{ 

printf ( ''node1 ['l.d] says hello from part 1 () #\n", id) ; 
} 

} 

environment node2[P2:id] { I* ==> Multiple environment structures are 
allowed, and are simply declared one 
after another. *I 

} 

composite part2() 
{ 

printf ( "node2 ['l.d] says hello from part2 () #\n", id) ; 
} 

environment host { 

} 

void main () 
{ 

printf ("host says hello\n"); 

} 

part1 ()#; 
part20#; I*==> Part1()# must finish before Part2()# 

begins execution. *I 

printf ("host says goodbye\n"); 
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Example 1.5: examples/helloworld/ex5.d 

I* This program prints out messages from two composite procedures which are· 
* called in parallel, inside of two different one dimensional environment 
* structures. *I 

#define Pi 8 
#define P2 6 

environment node1[P1:id] { 

composite part1() 
{ 

printf ( 11 node1 ['l.d] says hello from part10#\n", id); 
} 

} 

environment node2[P2:id] { 

composite part2() 
{ 

printf C'node2 ['l.d] says hello from part2 () #\n 11
, id) ; 

} 

} 

environment host { 

void main () 
{ 

printf ( 11 host says hello\n 11
); 

part1()# :: part2()#; I* ==> Part!()# and part2()# run in parallel, 
through the use of the 11

::
11 operator. 

These two composite procedures must be 
in different environments in order for 
the parallelism to work. *I 

printf ("host says goodby\n"); 
} 

} 
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4.3 Matrix-Vector Multiply 

These programs all solve the identical problem- a matrix-vector multiplication, but 
each program divides the data up among the processors in different ways. 

Example 2.1: examplesjmatvecjexl.d 

I* This program computes a matrix - vector product, dividing the matrix into 
* rows, with one row per processor. The matrix is of size M x N. *I 

#include "dino.h" 

#define M 16 
#define N 9 

environment node[M:id] { 

I* ==> Includes the predefined DINO mapping 
functions. *I 

composite matvec (in a, in x, out y) 
I* ==> Declaration of a composite procedure 

with three parameters, whose declara-
tions follow immediately. (Note the 
use of the keywords "in" and ''out".) *I 

double distributed a[M][N] map BlockRow; I* Input matrix *I 
I* ==> Declaration of distributed data requires 

use of the word "distributed" before 
the variable name, and must be followed 
by "map" and the name of the mapping 
function to be used. *I 

I* ==> This is an example of using a distributed 
data structure as a parameter to a 
composite procedure. *I 

double distributed x[N] map all; I* Input vector *I 
I* ==> Illustrates use of the built-in mapping 

function "all". *I 

double distributed y[M] map Block; I* Result vector *I 

{ 

int i; I* Looping variable *I 

I* Each environment computes y[id] *I 
y[id] = 0; I* ==> Since y[] has as the same number of 
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for (i = 0; i < N; i++) 
y [id] += a [id] [i] * x [i] ; 

} 

} 

elements as the environment structure, 
each environment has y[id] in local 
memory. *I 

I* ==> The local copy of a distributed 
data structure is refferenced like 
an ordinary variable. *I 

environment host { 

double a [M] [N] ; 
double x[N]; 
double y[M]; 

void main () 

{ 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
for (j = 0; j < N; j++) { 

} 

X [j] = j; 
for (i = 0; i < M; i++) 

a [i] [j] = i + j ; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ( 11 %6.2f", a[i][j]); 

printf ("\n"); 

printf ("\ninitial data for x:\n11
); 

for (i = 0; i < N; i++) 
printf ("%6.2f\n 11

, x[i]); 

I* Perform the computation *I 
matvec (a[][], x[], y[])#; I*==> Call of a composite procedure with 

parameters. Note the use of 11 
[]" 

to signify use of an entire axis of 
the data. Note that composite 
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} 

} 

procedure calls do not use pointers 
to return results. *I 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n''); 
for (i = 0; i < M; i++) 

printf ( "%6. 2f\n", y [i]); 
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Example 2.2: examples/matvecjex2.d 

I*· This program computes a matrix - vector product, dividing the matrix into 
* rows, with multiple rows per processor. The matrix is of size M x N, 
* where M must be a multiple of P (meaning each processor has an equal 
*number of rows). *I 

#include "dino.h" 

#define P 4 
#define M 16 
#define N 9 

environment node[P:id] { 

composite matvec (in a, in x, out y) 
double distributed a[M] [N] map BlockRow; 
double distributed x[N] map all; 
double distributed y[M] map Block; 

{ 

inti, j; I* Looping variables *I 

I* Input matrix *I 
I* Input vector *I 
I* Result vector *I 

I* Loop thru the rows of a[][] which are on this environment *I 
for (i = id * MIP; i < (id + 1) * MIP; i++) { 

I* ==> In this program, M is a multiple of P,' 
so each environment has MIP rows of 
the marix a[][], and MIP elements of 

} 

} 

} 

I* Compute y[i] *I 
y[i] = 0; 
for (j = 0; j < N; j++) 

y[i] += a[i] [j] * x[j]; 

environment host { 

double a [M] [N] ; 
double x[N]; 
double y[M]; 

the vector y[]. The environment index 
identifier "id" is used to compute 
which elements of a distributed data 
structure an environment has. *I 
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} 

void main () 

} 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
for (j = 0; j < N; j++) { 

} 

X [j] = j; 
for (i = 0; i < M; i++) 

a [ i] [j] = i + j ; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("%6.2f 11

, a[i][j]); 
printf C'\n"); 

printf ( 11 \ninitial data for x:\n 11
); 

for (i = 0; i < N; i++) 
printf ("%6.2f\n", x[i]); 

I* Perform the computation *I 
matvec (a[] [] , x [] , y []) #; 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n 11

); 

for (i = 0; i < M; i++) 
printf ( 11 %6.2f\n 11

, y[i]); 
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Example 2.3: examples/Inatvec/ex3.d 

I* This program computes a matrix - vector product, dividing the matrix into 
* roYs, with multiple rows per processor. The matrix is of size M x N, 
* Yhere M must be greater than P, but not necessarily a multiple. The 
* fairly complex calculations Yhich are required are done by hand. *I 

#include "dino.h" 

#define P 3 

#define M 16 
#define N 9 

environment node[P:id] { 

} 

composite matvec (in a, in x, out y) 
double distributed a[M][N] map BlockRoY; 
double distributed x[N] map all; 

I* Input matrix *I 
I* Input vector *I 
I* Result vector *I double distributed y[M] map Block; 

{ 

} 

int i, j; 
int firstrow; lastrow; 

I* Looping variables *I 
I* The first and last roYs on this processor *I 

I* ==> Since the number of rows in the matrix 
a[][] is not a multiple of the size of 
the environment, a complicated 
calculation based on id must be done to 
compute what rows of a[][] are on this 
environment. *I 

I* Compute firstrow and lastrow *I 
firstrow = id * MIP + (id < M'l.P? id M'l.P); 
lastrow = (id + 1) * MIP + ((id + 1) < M'l.P? id M'l.P- 1); 

I* Loop thru the rows of a[][] which are on this environment *I 
for (i = firstrow; i <= lastrow; i++) { 

} 

I* Compute y[i] *I 
y[i] = 0; 
for (j = 0; j < N; j++) 

y[i] += a[i] [j] * x[j]; 

environment host { 
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} 

double a [M] [N] ; 
double x[N]; 
double y[M]; 

void main () 

{ 

} 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
for (j = 0; j < N; j++) { 

} 

X [j] = j; 
for (i = 0; i < M; i++) 

a [i] [j] = i + j ; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("/.6.2f", a[i][j]); 

printf ("\n''); 

printf ("\ninitial data for x:\n"); 
for (i = 0; i < N; i++) 

printf ("/.6.2f\n", x[i]); 

I* Perform the computation *I 
matvec (a[] [] , x [] , y []) #; 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n"); 
for (i = 0; i < M; i++) 

printf (''/.6.2f\n", y[i]); 
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Example 2.4: exan1ples/Inatvecfex4.d 

I* This program computes a matrix - vector product, dividing the matrix into 
*rows, with multiple rows per processor. The matrix is of size M x N, 
* where M must be greater than P, but not necessarily a multiple. This 
* program uses methodology and functions provided by the map.c include 
* file. Use of a package along these lines can be helpful when a large 
* number of distributed objects of sizes which are not multiples of the 
* environment structure size are used. *I 

I* A listing of the map.c file appears immediately after this program. *I 

#include 11 dino .h'' 

#define P 3 
#define M 16 
#define N 9 

environment node[P:id] { 

#include 11 
•• linclmap.c" 

I* ==> Includes the map.c include file. Since 
this file contains code, it must be 
included within an environment. *I 

composite matvec (in a, in x, out y) 
double distributed a[M][N] map BlockRow; 
double distributed x[N] map all; 

I* Input matrix *I 
I* Input vector *I 
I* Result vector *I double distributed y[M] map Block; 

{ 

int i, j; 
map_ var a1; 

I* Setup map_var a1 
set_map_var (M, 

P, 
id, 
0, 
0, 
&a1); 

I* Looping variables *I 

*I 
I* 
I* 
I* 
I* 
I* 
I* 

I* ==> Declares a variable to hold useful 
information about an axis of a 
distributed data structure which 
is [block] mapped. *I 

Size of the axis *I 
Size of the environment axis it's mapped to *I 
Environment index identifier for that axis *I 
Left overlap of the mapping function *I 
Right overlap of the mapping function *I 
Address of the map_var *I 

I* ==> This function, defined in map.c, sets 
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} 

} 

up the map_var a1 to contain information 
about the first axis of the distributed 
variable a (which is the same as the 
only axis of x). *I 

I* Loop thru the rows of a[][] which are on this environment *I 
for (i = a1.left; i <= a1.right; i++) { 

} 

I* Compute y[i] *I 
y [i] = 0; 
for (j = 0; j < N; j ++) 

y [i] += a [i] [j] * x [j] ; 

I* ==> This statement loops thru the correct 
rows of a[] [] by using information from 
a1, the map_var set up earlier. 
"a1.left" and "a1.right" refer to the 
first and last elements of the "home" 
data on this environment *I 

environment host { 

double a [M] [N] ; 
double x[N]; 
double y[M]; 

void main () 

{ 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
for (j = 0; j < N; j++) { 

} 

X [j] = j; 
for (i = 0; i < M; i++) 

a [i] [j] = i + j ; 

I* Print out the initial data *I 
printf ( 11 Initial data for a: \n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j ++) 
printf ("/.6. 2f 11

, a[i] [j]); 
printf c•\n"); 
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} 

} 

printf ("\ninitial data for x:\n"); 
for (i = 0; i < N; i++) 

printf ( '''l.6. 2f\n", x [i]) ; 

I* Perform the computation *I 
matvec (a[] [] , x [] , y []) #; 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n"); 
for (i = 0; i < M; i++) 

printf ("'l.6. 2f\n", y [i]); 
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Example : exainples/inc/map.c 

I* This file contains functions for easy manipulation of DINO distributed 
* arrays where each processor can have different sized pieces. *I 

typedef struct { 
int left; I* First element of home data *I 
int right; I* Last element of home data *I 
int lover; I* First element of overlap data *I 
int rover; I* Last element of overlap data *I 

} map_var; 

I* This function computes a map variable for a given axis of a distributed 
* array, given the size of the axis, the size of the environment axis it 
* is mapped to, the index number for that axis, and the left and right 
* overlaps. *I 

void set_map_var (n_, p_, i_, 1_, r_, M_) 
int n_; I* Size of the axis *I 
int p_; I* Size of the environment axis it's mapped to *I 
int i_; I* The index of this environment *I 
int l_; I* The left overlap of the mapping *I 
int r_; I* The right overlap of the mapping *I 
map_var *M_; I* The result variable *I 

{ 

M_->left = i_ * (n_lp_) + (i_ < n_'l.p_? i_ n_'l.p_); 
M_->right = (i_ + 1) * (n_lp_) + ((i_ + 1) < n_'l.p_ ? i_ 
M_->lover = (M_->left > l_? M_->left- l_ : 0); 

n_'l.p_- 1); 

M_->rover = (M_->right + r_ < n_ ? M_->right + r_ n_ - 1); 
} 

I* This function modifies a map variable to only use elements of the array 
* which are within the given bounds. *I 

void limit_map_var (1_, r_, M_) 
int l_; I* Left limit *I 
int r_; I* Right limit *I 
map_var *M_; I* The map variable *I 

{ 

if (M_->left < l_) M_->left = l_; 
if (M_->lover < l_) M_->lover = l_; 
if (M_->right > r_) M_->right = r_; 
if (M_->rover > r_) M_->rover = r_; 

} 
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Example 2.5: examples/matvecjex5.d 

I* This program computes a matrix - vector product, dividing the matrix into 
* columns, with one column per processor. The matrix is of size M x N. *I 

#include ''dino. h" 

#define M 16 
#define N 9 

environment node[N:id] { 

} 

composite matvec (in a, in x, out y) 
double distributed a[M] [N] map BlockCol; 
double distributed x[N] map Block; 
double distributed y[M] map all; 

I* Input matrix *I 
I* Input vector *I 
I* Result vector *I 

{ 

} 

int i; I* Looping variable *I 

I* Each processor computes its contribution to the final result y[] *I 
for (i = 0; i < M; i++) 

y [i] = a [i} [id] * x [id] ; 

I* Now, we do a sum across all processors to compute the final result *I 
y[] = gsum(y[])#; I*==> Reduction functions are called just like 

an ordinary function, with a "#" sign 
following it. *I 

I* ==> Reductions of array quantities work on 
an element-by-element basis *I 

environment host { 

double a[M][N]; 
double x[N]; 
double y[M]; 

void main () 

{ 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
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} 

} 

for (j = 0; j < N; j++) { 
X [j] = j; 

} 

for (i = 0; i < M; i++) 
a[i][j] = i + j; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("/.6.2f 11

, a[i][j]); 
printf ( 11 \n"); 

printf ("\ninitial data for x:\n11
); 

for (i = 0; i < N; i++) 
printf ("/.6.2f\n", x[i]); 

I* Perform the computation *I 
matvec (a[][], x[], y[])#; 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n11

); 

for (i = 0; i < M; i++) 
printf ("/.6. 2f\n", y [i]); 
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Example 2.6: examplesjn1atvecjex6.d 

I* This program computes a matrix - vector product, dividing the matrix into 
* columns, with multiple columns per processor. The matrix is of size M x N, 
* where N must be a multiple of P. *I 

#include 11 dino.h 11 

#define P 3 
#define M 16 
#define N 9 

environment node[P:id] { 

composite matvec (in a, in x, out y) 
double distributed a[M] [N] map BlockCol; 
double distributed x[N] map Block; . 
double distributed y[M] map all; 

{ 

I* Input matrix *I 
I* Input vector *I 
I* Result vector *I 

int i, j; I* Looping variable *I 

I* Each processor computes a contribution to the final result y[] *I 
for (i = 0; i < M; i++) { 

} 

y [i] = 0; 
for (j = id * N/P; j < (id + 1) * NIP; j++) 

y [i] += a[i] [j] * x [j]; 

I* No~, we do a sum across all processors to compute the final result *I 
y[] = gsum(y0)#; 

} 
} 

environment host { 

double a [M] [N] ; 
double x[N]; 
double y[M]; 

void main () 

{ 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
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} 
} 

for (j = 0; j < N; j++) { 
X [j] = j; 

} 

for (i = 0; i < M; i++) 
a [i] [j] = i + j ; 

I* Print out the initial data *I 
printf ("Initial data for a: \n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("'l.6.2f", a[i][j]); 

printf ("\n''); 

printf ("\ninitial data for x:\n 11
); 

for (i = 0; i < N; i++) 
printf ( 11 'l.6.2f\n", x[i]); 

I* Perform the computation *I 
matvec (a[][], x[], y[])#; 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n"); 
for (i = 0; i < M; i++) 

printf (t''l.6.2f\n", y[i]); 
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Example 2.7: examplesfmatvecfex7.d 

I* This program computes a matrix - vector product, dividing the matrix into 
* blocks, ~ith multiple elements per processor. The matrix is of size M x N, 
* ~here M must be a multiple of Pi, and N must be a multiple of P2. *I 

#include ''dino .h" 

#define Pi 4 
#define P2 3 
#define M i6 
#define N 9 

environment node[P1:idi][P2:id2] { 

} 

map BlockAll = [block] [all]; 
map AllBlock = [all] [block] ; 

I* ==> These are examples of user defined 
mappings. The extra dimentions had 
to be used because of a deficiency in 
DING mappings. *I 

composite matvec (in a, in x, out y) 
double distributed a[M][N] map BlockBlock; 
double distributed x[1] [N] map AllBlock; 
double distributed y[M][i] map BlockAll; 

I* Input matrix *I 
I* Input vector *I 
I* Result vector *I 

{ 

} 

int i, j; I* Looping variable *I 

I* Loop through the elements of y 0 mapped to this procesor *I 
for (i = id1 * MIP1; i < (id1 + 1) * MIP1; i++) { 

} 

I* Compute the contribution of this processor to the final result *I 
y [i] [0] = 0; 

for (j = id2 * NIP2; j < (id2 + 1) * NIP2; j++) 
y[i][O] += a[i][j] * x[O][j]; 

I* Now, we do a sum across all processors in my rov to compute the final 
* result *I 

y[<id1 * MIP1,(id1 + 1) * M/P1 - 1>] [0] = 
gsurn(y[<id1 * MIP1,(id1 + 1) * M/P1- 1>] [0])# {node[id1] []}; 

I* ==> This is an example of a reduction using 
an explicit environment set, vhich is 
placed in brackets after the 11 # 11 sign. *I 
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environment host { 

} 

double a [M] [N]; 
double x [1] [N] ; 
double y [M] [1] ; 

void main () 

{ 

} 

int i, j ; I* Looping variables *I 

I* Set up the initial data for a[][] and v[] *I 
for (j = 0; j < N; j++) { 

} 

X [0] [j] = j; 
for (i = 0; i < M; i++) 

a [ i] [j] = i + j ; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("'l.6.2f", a[i][j]); 

printf ("\n''); 

printf ("\ninitial data for x:\n"); 
for (i = 0; i < N; i++) 

printf ("'l.6.2f\n", x[O][i]); 

I* Perform the computation *I 
matvec (a[][], x[][], y[][])#; 

I* Printout the resulting vector y *I 
printf ("\nResult data for y:\n"); 
for (i = 0; i < M; i++) 

printf ( ''%6. 2f\n", y [i] [0]); 
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4.4 Smoothing Algorithms 

The programs in this section perform a "smoothing" algorithm. Each point is con
tinually recomputed to be the average of some subset of the points around it. These 
examples demonstrate the use of overlaps in mapping functions. 

Example 3.1: examples/smoothingjexl.d 

I* This program performs a horizontal smoothing, with one row of the matrix 
* per processor. The matrix is of size M x N. Each iteration of the 
* algorithm sets row i to be the average of rows i-1 and i+1, except for 
* rows on the edge of the matrix, which are left constant. *I 

#include "dino.h" 

#define max(x,y) (x > 
#define min(x,y) (x < 

#define M 16 
#define N 11 

environment node [M: id] 

composite smooth (a, 

y ? 

y ? 

{ 

in 

X 

X 

iter) 

y) 
y) 

I* ==> Since no "in" or "out" keyword has been 
used before a, it is an in/out 
parameter. *I 

double distributed a[M] [N] map BlockRowOverlap; 

int iter; I* ==> Illustrates use of a non-distributed 
parameter to a composite procedure. 
Note the use of the "in" keyword in 
the parameter list. *I 

{ 

int i, j; I* Looping variables *I 

I* Repeat the smoothing process iter times *I 
for (i = 0; i < iter; i++) { 

I* Send out your data and receive it back again *I 

if (i 1- 0) { I* ==> We don't need to communicate on the 
first iteration, because the data we 
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} 

} 

} 

} 

a[<id,id>] 0# = a[<id,id>] 0; 

need has been set up by the composite 
procedure call. *I 

I* ==> Implicit send of the id'th ro~ of a. 
Notice the use of the # sign, and how 
an assignment statement is used to 
send data. *I 

I* ==> Used a[<id,id>] []# instead 
of a[id][]# because of a bug in DINO. *I 

a[<max(id-1,0),min(id+1,M-1)>] []#; 

I* ==> Implicit receive. Receives rows id-1 
and id+1, except on the edges, where 
it only receives one row. *I 

I* Perform the computation, but only on non-edge nodes *I 
if (id != 0 && id != M - 1) 

for (j =·O; j < N; j++) 
a[id] [j] = (a[id-1] [j] + a[id+1] [j]) I 2; 

environment host { 

void main () 

{ 

double a [M] [N] ; 
int iter; 

int i, j; 

I* Input data *I 
I* Holds the iteration count *I 

I* Looping variables *I 

I* Set up the initial data for a[][] *I 
for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 
a[i] [j] = (i + 1)*(j + 1); 

for (i = 1; i < M - 1; i++) 
for (j = 0; j < N; j++) 

a[i] [j] = 0; 
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} 

} 

iter = 300; I* ==> We must use a variable to hold the 
number of iterations, because of a 
bug in DINO which doesn't allow 
passing constants to a composite 
procedure. *I 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ( 11 %6. 2f", a[i] [j]); 

printf ("\n 1
'); 

I* Perform the computation *I 
smooth (aD 0, iter)#; 

I* Printout the results *I 
printf ("Result data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ( 1''l.6.2f", a[i][j]); 

printf ("\n' 1
); 
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Example 3.2: exan1plesjsmoothingjex2.d 

I* This program performs a vertical smoothing, with the matrix partitioned 
* by columns, with multiple columns per processor. The matrix is of size 
* M x N, where N must be a multiple of P. *I 

#include "dino.h" 

#define max(x,y) (x > y ? X y) 
#define min(x,y) (x < y ? X y) 

#define M 16 
#define N 16 
#define p 4 

environment node[P:id] { 

composite smooth (a, in iter) 
double distributed a[M] [N] map BlockColOverlap; 
int iter; 

{ 

int i, j, k; . I* Looping variables *I 

I* Repeat the smoothing process iter times *I 
for (i = 0; i < iter; i++) { 

I* Send out your data and receive it back again, if not .the first 
* iteration *I 

if (i ! = 0) { 

a[] [ <id * NIP, (id + 1) * NIP - 1>] # = 
a[] [ <id * NIP, (id + 1) * NIP - 1>]; 

I* ==> This statement sends out those columns 
of a which are ''home" on this 
environment. Only those columns which 
have copies on another environment 
are actually sent. *I 

a[] [<max(id *NIP- 1, O),min((id + 1) *NIP, N- 1)>]#; 

I* ==> Receives the "copy" rows. Only those 
columns which are copies are actually 
sent. The max() and min() calls 
deal with the edge cases *I 
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} 

} 
} 

} 

I* Perform the computation, but only on non-edge columns *I 
for (j = 0; j < M; j++) 

for (k = max(id *NIP, 1); k <= min~(id + 1) *NIP- 1, N- 2); k++) 
a[j] [k] = (a[j] [k-1] + a[j] [k+1]) I 2; 

environment host { 

void main () 

{ 

double a [M] [N] ; 
int iter; 

int i, j; 

I* Input data *I 
I* Holds the iteration count *I 

I* Looping variables *I 

I* Set up the initial data for a[][] *I 
for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 
a[i] [j] = (i + 1)*(j + 1); 

for (i = 0; i < M; i++) 
for (j = 1; j < N - 1; j++) 

a [i] [j] = 0; 

I* Set up the variable which will contain the number of iterations *I 
iter = 300; 

I* Print out the initial data *I 
printf ( 11 Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ( 11 /.6.2f", a[i] [j]); 

printf ( 11 \n"); 

I* Perform the computation *I 
smooth CaD 0, iter)#; 

I* Printout the results *I 
printf ("Result data for a:\n"); 
for (i = 0; i < M; i++) { 

for (j = 0; j < N; j++) 
printf ("/.6.2f", a[i][j]); 
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printf ( 11 \n''); 
} 

} 

} 
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Example 3.3: exan1ples/sn1oothing/ex3.d 

I* This program computes a five point smoothing algorithm (each point is 
* set to be the average of his neighbors to the north, south, ~est, and east). 
* It operates on a matrix of size M x N, blocking the matrix into small 
* chuncks on a t~o dimensional processor array. M must be a multiple of P1, 
* and N a multiple of P2. *I 

#include 11 dino .h'' 

#define max(x,y) (x > y ? X y) 
#define min(x,y) (x < y ? X y) 

#define M 16 
#define N 16 
#define P1 4 
#define P2 4 

environment node[P1:id1][P2:id2] { 

composite smooth (a, in iter) 
double distributed a[M] [N] map FivePt; 

I* ==> The FivePt mapping divides the matrix a 
into blocks of size MIP1 x NIP2. Each 
environment is assigned one of these 
blocks, plus the one element Yide strips 
to each of the four sides. *I 

int iter; 

{ 

inti, j, k; I* Looping variables *I 

int home_n, home_s, home_~, home_e; 
I* Boundaries of the home data, not including the edges of 
* the matrix. *I 

int copy_n, copy_s, copy_~, copy_e; 
I* Boundaries of the copy data, not including the edges of 
* the matrix. *I 

I* ==> To make the program easier to read and 
understand, varaibles containing 
the ranges of home and copy data on each 
processor are useful. *I 
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} 

} 

I* Compute home_n, home_s, home_-w, and home_e 
home_n = max (MIP1 * id1, 1); 
home_s = min ((id1 + 1) * MIP1 - 1' M-2); 
home_-w = max (NIP2 * id2, 1); 
home_e = min ((id2 + 1) * NIP2 1, N-2); 

I* Compute copy_n, copy_s, copy_-w, and copy_e 
copy_n = max (home_n - 1' 1); 
copy_s = min (home_s + 1, M-2); 
copy_-w = max (home_-w - 1, 1) ; 
copy_e = min (home_e + 1, N-2); 

I* Repeat the smoothing process iter times *I 
for (i = 0; i < iter; i++) { 

*I 

*I 

I* Send out your data and receive it back again, if not the first 
* iteration *I 

} 

if (i ! = 0) { 

} 

a[<home_n,home_s>][<home_Y,home_e>]# = 
a[<home_n,home_s>] [<home_Y,home_e>];, 

a[<copy_n,copy_s>][<copy_Y,copy_e>]#; 

I* Perform·the computation, but only on non-edge elements *I 
for (j = home_n; j <= home_s; j++) 

for (k = home_Y; k <= home_e; k++) 
a[j] [k] = (a[j] [k-1] + a[j] [k+1] + a[j-1] [k] + a[j+1] [k]) I 4; 

environment host { 

void main () 

{ 

double a [M] [N] ; 
int iter; 

int i, j; 

I* Input data *I 
I* Holds the iteration count *I 

I* Looping variables *I 

I* Set up the initial data for a[][] *I 
for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 
a[i] [j] = (i + 1)*(j + 1); 

for (i = 1; i < M - 1; i++) 
for (j = 1; j < N - 1; j++) 
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} 

} 

a [i] [j] = 0; 

I* Set up the variable which will contain the number of iterations *I 
iter = 500; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("'l.7.2f", a[i][j]); 

printf (''\n 11
); 

I* Perform the computation *I 
smooth (a0[], iter)#; 

I* Printout the results *I 
printf ("Result data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ('''l.7.2f", a[i][j]); 

printf ( 11 \n 11
); 

,....,) 
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Example 3.4: exan1ples /smoothing/ ex4.d 

I* This program computes a five point smoothing algorithm, just like ex3.d, 
* except that it deals with matrix sizes which are not a multiple of the 
* number of processors. It uses the include file d "map.c" to do 
* this. *I 

#include "dino.h" 

#define max(x,y) (x > y ? X y) 
#define min(x,y) (x < y ? X y) 

#define M 11 
#define N 8 
#define P1 3 
#define P2 3 

environment node[P1:id1] [P2:id2] { 

#include 11 /anchor/student/derby/doc/ examples/inc/map. c" 

I* ==> Includes the map.c include file. Since 
this file contains code, it must be 
included within an environment. See 
the listing after example 2.4. *I 

composite smooth (a, in iter) 
double distributed a[M][N] map FivePt; 
int iter; 

{ 

int i, j , k; 
map_var a1, a2; 

I* Looping variables *I 

I* Setup map_var's a1 and a2 for the complete data structure A *I 
set_map_var (M, P1, id1, 1, 1, &a1); 
set_map_var (N, P2, id2, 1, 1, &a2); 

I* ==> Illustrates the use of set_map_var 
with overlaps (see examples/matvec/ex4.d 
for an explanation of set_map_var). *I 

I* Limit the map_var's to not use the edges of A, which are boundary 
* conditions that don't change *I 

limit_map_var (1, 
M-2, 

I* Minimum data used *I 
I* Maximum data used *I 
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} 

} 

&a1); I* Address of the map_var *I 

I* ==> This function, defined in map.c, limits 
the map_var a1 to the range <1,M-2>. 
This means that the edge data is not 
send and/or received when map_var a1 
is used. *I 

limit_map_var (1, N-2, &a2); 

I* Repeat the smoothing process iter times *I 
for (i = 0; i < iter; i++) { 

} 

I* Send out your data and receive it back again, if not the first 
* iteration *I 

if (i ! = 0) { 

} 

a[<a1.left,a1.right>] [<a2.left,a2.right>]# = 
a[<a1.left,a1.right>] [<a2.left,a2.right>]; 

a[<a1.lover,a1.rover>][<a2.lover,a2.rover>]#; 

I* Perform the computation, but only on non-edge elements *I 
for (j = a1.left; j <= a1.right; j++) 

for (k =·a2.left; k <= a2.right; k++) 
a[j] [k] = (a[j] [k-1] + a[j] [k+1] + a[j-1] [k] + a[j+1] [k]) I 4; 

environment host { 

void main () 

{ 

double a [M] [N] ; 
int iter; 

int i, j; 

I* Input data *I 
I* Holds the iteration count *I 

I* Looping variables *I 

I* Set up the initial data for a[][] *I 
for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 
a[i] [j] = (i + 1)*(j + 1); 

for (i = 1; i < M - 1; i++) 
for (j = 1; j < N - 1; j++) 

a[i] [j] = 0; 
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} 

} 

I* Set up the variable which will contain the number of iterations *I 
iter = 100; 

I* Print out the initial data *I 
printf (!'Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ( 11 %7.2f 11

, a[i][j]); 
printf ("\n"); 

I* Perform the computation *I 
smooth (aDD, iter)#; 

I* Printout the results *I 
printf ("Result data for a:\n11

); 

for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("%7.2f", a[i][j]); 

printf ("\n"); 
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Example 3.5: examples/sn1oothingjex5.d 

I* This program performs a nine-point smoothing, where each point is updated 
* to be the average of his eight neighbors. The matrix is M x N, where 
* M is a multiple of Pi, and N is a multiple of P2. The use of asynchronous 
* variables is demonstrated here. *I 

#include "dina .h'' 

#define max(x,y) (x > y ? X y) 
#define min(x,y) (x < y ? X y) 

#define M 12 
#define N 8 
#define Pi 4 
#define P2 4 

environment node[P1:id1] [P2:id2] { 

composite smooth (a, in iter) 
double l*asynch*l distributed a[M] [N] map NinePt; 

I* ==> The NinePt mapping is just like FivePt, 
except that the four corner overlap 
elements are included in the overlap. *I 

I* ==> Note the use of the "asynch 11 keyword, 
making communications using the matrix a 
non-blocking. This program will run 
either synchronous or asynchronous. *I 

int iter; 

{ 

int i, j , k; I* Looping variables *I 

int home_n, home_s, home_w, home_e; 
int copy_n, copy_s, copy_w, copy_e; 

I* Boundaries of the home data *I 
I* Boundaries of the copy data *I 

I* Compute home_n, home_s, home_w, and home_e *I 
home_n =max (M/P1 * id1, 1); 
home_s =min ((id1 + 1) * MIP1- 1, M-2); 
home_w =max (N/P2 * id2, 1); 
home_e =min ((id2 + 1) * NIP2- 1, N-2); 

I* Compute copy_n, copy_s, copy_w, and copy_e *I 
copy_n =max (home_n- 1, 1); 
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} 

} 

copy_s = min (home_s + 1' M-2); 
copy_w = max (home_w - 1 J 1); 

copy_e = min (home_e + 1, N-2); 

I* Repeat the smoothing process iter times *I 
for (i = O· J i < iter; i++) { 

} 

I* Send out your data and receive it back again, if not the first 
* iteration *I 

if (i ! = 0) { 

} 

a[<home_n,home_s>] [<home_w,home_e>]# = 
a[<home_n,home_s>][<home_w,home_e>]; 

a[<copy_n,copy_s>] [<copy_w,copy_e>]#; 

I* Perform the computation, but only on non-edge elements *I 
for (j = home_n; j <= home_s; j++) 

for (k = home_w; k <= home_e; k++) { 

} 

a [j] [k] = a [j -1] [k-1] + 
a[j-1] [k] + 
a [j -1] [k+ 1] + 
a [j] [k-1]; 

I* ==> The computation has been split up into 
three separate pieces because some 
compiler's can't handle the large 
expression produced by DINO. *I 

a[j] [k] += a[j] [k+1] + 
a[j+1] [k-1] + 
a[j+1] [k] + 
a[j+1] [k+1]; 

a [j] [k] I= 8 ; 

environment host { 

void main () 

{ 

double a [M] [N] ; 
int iter; 

I* Input data *I 
I* Holds the iteration count *I 
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} 

} 

int i, j; I* Looping variables *I 

I* Set up the initial data for a[][] *I 
for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 
a[i] [j] = (i + 1)*(j + 1); 

for (i = 1; i < M - 1; i++) 
for (j = 1; j < N - 1; j++) 

a [i] [j] = 0; 

I* Set up the variable Yhich will contain the number of iterations *I 
iter = 300; 

I* Print out the initial data *I 
printf ( 11 Initial data for a:\n 11

); 

for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j ++) 
printf ( 11 '/.7.2f'', a[i][j]); 

printf ( 11 \n 11
); 

I* Perform the computation *I 
smooth (aDD, iter)#; 

I* Printout the results *I 
printf ("Result data for a: \n") ; 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j ++) 
printf ( 11 '/.7.2f", a[i][j]); 

printf ("\n"); 
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Example 3.6: examplesjsn1oothingjex6.d 

I* This program is a smoothing-type algorithm which computes Pascal's 
* triangle, to size M x N, by seting each element to the sum of the numbers 
* directly above and to the left. It illustrates user-defined mappings. *I 

#include ''dine .h" 

#define M i2 
#define N i2 
#define Pi 4 
#define P2 4 

environment node[Pi:idi][P2:id2] { 

#include ''/anchor/student/derby/doc/examples/inc/map. c" 

I* ==> A listing of this file appears after 
after example 2.4. *I 

map LeftUpOverlap = [block overlap i,O] [block overlap i,O]; 

I* ==> This is a user-defined mapping. It 
sets up a mapping which divides a 2D 
array into blocks, and each environment 
receives a copy of the one element 
border strips to the west and north. *I 

composite smooth (a, in iter) 

double distributed a[M] [N] map LeftUpOverlap; 
int iter; 

{ 

inti, j, k; 
map_ var ai, a2; 

I* Looping variables *I 
I* Mapping variables *I 

I* Setup the mapping variables *I 
set_map_var (M, Pi, idi, 1, 0, &a1); 
set_map_var (N, P2, id2, 1, 0, &a2); 
limit_map_var (1, M-1, &a1); 
limit_map_var (1, N-1, &a2); 

I* Repeat the smoothing process iter times *I 
for (k = 0; k < iter; k++) { 

I* Send out your data and receive it back again, if not the first 
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} 

} 

} 

* iteration *I 
if (k != 0) { 

} 

if (id1 != P1-1 I I id2 != P2-1) 
a[<a1.left,a1.right>][<a2.left,a2.right>]# = 
a[<a1.left,a1.right>][<a2.left,a2.right>]; 

I* ==> The lo~er right environment has no 
data to send. This if statement 
prevents a run-time warning about it. *I 

if (id1 != o I I id2 != o) 
a[<a1.lover,a1.rover>] [<a2.lover,a2.rover>]#; 

I* ==> The upper left environment has no 
data to receive. This if statement 
prevents a run-time warning about it. *I 

I* Perform the computation, but only on non-edge nodes *I 
for (i = a1.left; i <= a1.right; i++) 

for (j = a2.left; j <= a2.right; j++) 
a[i] [j] = a[i-1] [j] + a[i] [j-1]; 

environment host { 

void main () 

{ 

double a[M] [N]; 
int iter; 

int i, j; 

I* Input data *I 
I* Holds the iteration count *I 

I* Looping variables *I 

I* Set up the initial data for a[][] *I 
for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 
a [i] [j] = 0; 

for (i = 0; i < M; i++) 
a [i] [0] = 1; 

for (j = 0; j < N; j ++) 
a [0] [j] = 1; 
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} 
} 

I* Set up the variable ~hich ~ill contain the number of iterations *I 
iter = 7; 

I* Print out the initial data *I 
printf ("Initial data for a:\n"); 
for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("'l.7.1f", a[i][j]); 

printf ("\n"); 

I* Perform the computation *I 
smooth (a[][], iter)#; 

I* Printout the results *I 
printf (' 1Resul t data for a: \n 11

) ; 

for (i = 0; i < M; i++) { 

} 

for (j = 0; j < N; j ++) 
printf ("'l.5.1f 11

, a[i][j]); 
printf ("\n''); 
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4.5 Complex Examples 

These final examples were included to show how somewhat more complex DINO 
programs are put together. They illustrate a number of features not found in the 
earlier examples. 

Example 4.1: examplesjcomplex/mm.d 

I* This program does a matrix-matrix multiply, of two matrices of size 
* N x N, where N is a multiple of P, the number of environments. 

* * The basic algorithm is to block the first matrix 
* by rows and send a block to each processor, and 
* block the second matrix by columns and send a block 
* to each processor. Each processor computes the 
* results for that sub-matrix for which it has data 
* and then the blocks of columns are all shifted to 
* the right one processor. *I 

#include "dino.h" 

#define N 32 
#define P 16 

environment node[P:id] { 

composite mult (in A, in B, out C) 
float distributed A[N] [N] map BlockRow; I* First matrix *I 
float distributed B [N] [N] map BlockCol; I* Second matrix *I 
float distributed C[N] [N] map BlockRow; I* Result matrix *I 

{ 

int i, j J k, 1; I* Looping variables *I 
int my_first, my_last; I* Columns of B which are mine *I 
int left_first, left_last; . I* Columns of B which are my left neighbor's 
int left, right; I* Environment indices of my neighbors *I 

I* Compute the environment indices of the nodes on the right and left *I 
right = (id == P - 1) ? (0) : (id + 1); 
left = (id == 0) ? (P- 1) (id- 1); 

I* Compute the starting and stopping indices of the data in my block *I 
my_first = id * NIP; 
my_last = (id + 1) * NIP - 1; 

I* Compute the starting and stopping indices of the data in the block 
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} 

} 

* of the node to the left *I 
left_first = (id == 0)? ((P- 1) *NIP) : ((id- 1) * N/P); 
left_last = (id == 0) ? (N- 1) : (id *NIP- 1); 

I* Loop through the blocks of columns *I 
for (i = 0; i < P; i++) { 

} 

I* First, send out the data that the node on the right of me Yill 
* need for the next iteration *I 

B[] [<left_first, left_last>]# {node[left]} = 
B[][<my_first, my_last>]; 

I* Loop thru the block of C[] [] that I currently have data for *I 
for (j = my_first; j < my_last + 1; j++) 

for (k = 0; k < NIP; k++) { 

} 

I* Compute the dot product of the appropriate data *I 
C [j] [k + ( ( id + i) * NIP) Y. N] = 0; 
for (1 = 0; 1 < N; l++) 

C[j][k + ((id + i) *NIP) Y. N] += 
A [j] [l] * B [1] [k + my _first]; 

I* Finally, receive the data from the node on the right that I need 
* for the next iteration *I 

B[] [<my_first, my_last>] = B[][<my_first, my_last>]# {node[right]}; 

environment host { 

main() { 

inti, j; I* Looping variables *I 
float a [N] [N] , b [N] [N] , c [N] [N] ; 

I* Initialize the two multiplicand arrays *I 
printf ("Initializing ... \n"); 
for (i = 0; i < N; i++) 

for (j = 0; j < N; j++) { 
a [i] [j] = 0. 1; 

b[iJ [jJ = Ci + j) I 10.0; 
} 

I* Preform the computation *I 
printf ("Performing the computation ... \n"); 
mul t (a[] [] , b [] [] , c [] [] ) # ; 



} 

} 

I* Print out the results -- because the data ye used for a[][] and b[] [] 
* generates the same results for each roY, Ye only print out the first 
* roY *I 

printf (''Results: \n"); 
for (i = 0; i < N; i++) { 

if (i '!. 8 == 0) printf("\n"); 
printf (" '/.6. 2f", c [0] [i]) ; 

} 

printf("\n"); 

84 



Exan1ple 4.2: exan1ples/ con1plexjredblack.d 

I* This program uses a red-black algorithm to solve Poisson's equation, 
* given rectangular boundary conditions. It uses the example package 
* of routines for dealing with uneven mappings in map.c. *I 

I* Defined size of the processor grid *I 
#define Pi 4 
#define P2 4 

I* Defined size of the data grid *I 
#define Ni 8 
#define N2 8 

I* Define the mapping for the data *I 
map FivePoint = [block overlap i,i] [block overlap i,i]; 

environment node[Pi:idi][P2:id2] { 

#include "lanchorlstudentlderbyldoclexampleslincludelmap.c" 

composite iterate (a, in iter) 

double distributed a[Ni] [N2] map FivePoint; 
int iter; 

{ 

home_ var ai, a2; I* Hold the looping information for 
int q; I* Looping variable *I 
int i, j; I* Index variables *I 

I* Set up the home variables for a *I 
set_home_vars (Ni, Pi, id1, 1, 1, &a1); 
set_home_vars (N2, P2, id2, 1' 1' &a2); 
limit_home_vars ( 1, N1 - 2, &a1); 
limit_home_vars ( 1, N2 - 2, &a2); 

I* Go around iter times *I 
for (q = 0; q < iter; q++) { 

this *I 

I* Update the information, if not the first iteration *I 
if (q > 0) { 

I* Send the home copy *I 
a[<a1.l_main,a1.r_main>] [<a2.l_main,a2.r_main>]# = 
a[<a1.l_main,a1.r_main>] [<a2.l_main,a2.r_main>]; 
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} 

} 

} 

I* Receive the data *I 
a[<a1.l_over,a1.r_over>] [<a2.l_over,a2.r_over>] = 
a[<a1.l_over,a1.r_over>] [<a2.l_over,a2.r_over>]#; 

} 

I* Now, let's recompute the even entries *I 
for (i = a1.l_main; i <= a1.r_main; i++) 

for (j = ((((i + a2.l_main) Y. 2) == 1) ? 1 
j <= a2.r_main; j += 2) 

I* Do the recomputation *I 

0) + a2 .l_main; 

a[i] [j] = (a[i-1] [j] + a[i+1] [j] + a[i] [j-1] + a[i] [j+1]) I 4; 

I* Redistributed the information *I 
a[<a1.l_main,a1.r_main>] [<a2.l_main,a2.r_main>]# = 
a[<a1.l_main,a1.r_main>] [<a2.l_main,a2.r_main>]; 

a[<a1.l_over,a1.r_over>] [<a2.l_over,a2.r_over>] = 
a[<a1.l_over,a1.r_over>] [<a2.l_over,a2.r_over>]#; 

I* Now, let's recompute the odd entries *I 
for (i = a1.l_main; i <= a1.r_main; i++) 

for (j = ((((i + a2.l_main) Y. 2) == 0) ? 1 
j <= a2.r_main; j += 2) 

I* Do the recomputation *I 

0) + a2.l_main; 

a[i] [j] = (a[i-1] [j] + a[i+1] [j] + a[i] [j-1] + a[i] [j+1]) I 4; 

environment host { 

void main () { 

double m[N1][N2]; 
int i, j; 
int iter = 100; 

I* Set up the data in m *I 
for (i = 0; i < N1; i++) 

I* The array of data *I 
I* Index variables *I 
I* Fake iteration variable *I 

for (j = 0; j < N2; j++) 
m[i][j] = (i + 1) * (j + 1); 

for (i = 1; i < N1 - 1; i++) 
for (j = 1; j < N2 - 1; j++) 

m[i][j] = 0; 

I* Do the computation *I 
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} 

} 

printf ("Running ... \n"); 
iterate (m[][], iter)#; 

I* Print out the results *I 
for (i = 0; i < N1; i++) { 

} 

for (j = 0; j < N2; j++) 
printf ("'l.6.2f ", m[i] [j]); 

printf ("\n"); 

printf ("\nThat's it!\n"); 
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Example 4.3: examplesjcomplexjrow.d 

I* This program solves Poisson's equation, by using a row-at-a-time update 
* algorithm. *I 

#include <stdio.h> 
#include <math.h> 
#include "dino .h'1 

#define N 8 
#define P 4 

environment node[P:id] { 

double d[N], s[N]; 

composite setup() { 

} 

int i; 

I* Setup d and s so that they can be used by SolveRow *I 
d[1] = 2; 
for (i = 2; i < N - 1; i++) { 

s[i] = -1 I d[i- 1]; 
d[i] = sqrt (4- s[i] * s[i]); 

} 

void solve_row (U, i) 

double distributed U[N] [N] map BlockRowOverlap; 
int i; 

{ 

int j; 
double r = 1. 0; 
double new[N]; 

I* Perform the forward solve *I 
new [1] = (U[i-1] [1] + U[i+1] [1] + U[i] [O])Id[1]; 
for (j=2; j<N-2; j++) 

new [j] = (U[i-1] [j] + U[i+1] [j] - s[j]*new[j-1] )ld[j]; 
new [N-2] = (U[i-1] [N-2] +U[i+1] [N-2] +U[i][N-1] -s[N-2]*new[N-3])1d[N-2]; 

I* Perform the backward solve *I 
new [N-2] = (new[N-2])1d[N-2]; 
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for (j=N-3; j > 0; j=j-1) 
ne~ [j] = (ne~[j]- s[j+1]*ne~[j+1])1d[j]; 

I* relaxation *I 
for (j=1; j<N-1; j++) 
U[i] [j] = r*ne~[j] + (1-r)*U[i] [j]; 

} 

I* Parallel Algorithm For Ro~-Wise Red Black, with NIP Ro~s on each 
* processor *I 

composite solver (U) 

double distributed U[N] [N] map BlockRo~Overlap; 

{ 

I* Compute the indices of the first and last ro~s in each block *I 
int firstro~ = id ? (id * NIP) : 1; 
int lastro~ = (id == (P-1)) ? N-2 : ((id+1) * (NIP) - 1); 

I* Compute the indices of the first even and first odd ro~s *I 
int firsteven = firstrow%2 ? firstrow + 1: firstro~ ; 
int firstodd = firstro~%2 ? firstrow : firstrow + 1; 

int i, k; I* Looping variables *I 

for (k=O; k<10; k++) { 

I* Update the odd rows in each block *I 
for (i=firstodd; i <= lastro~; i=i+2) { 

} 

if ((i==firstro~) && (i != 1) && (k != 0)) 
U[i-1] []#; 

if ((i==lastrow) && (i != N-2) && (k != 0)) 
u [i +1] [] #; 

solve_ro~ (U,i); 
if (((i==firstrow) && (i != 1)) I I ((i==lastrow) && (i •- N-2))) 

U[i][]# = U[i][]; 

I* Update the even ro~s in each block *I 
for (i=firsteven; i <= lastrow; i=i+2) { 

if ((i==firstrow) && (i != 1) && (k != 0)) 
u [i -1] [] #; 

if ((i==lastrow) && (i != N-2) && (k != 0)) 
u [i+1] [] #; 

solve_row (U,i); 
if (((i==firstrow) && (i != 1)) I I ((i==lastrow) && (i != N-2))) 

u [i] [] # = u [i] [] ; 
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} 

} 

} 

} 

environment host { 

} 

main () { 

} 

float Uh [N] [N]; 

int i,j; 

I* Initialize the data *I 
for (i=O; i<N; i++) 

for (j=O; j<N; j++) 

Uh[i] [j] = i*j; 
for (i=1; i<N-1; i++) 

for (j=1; j<N-1; j++) 
Uh[i][j] = Uh[i][j]- .10; 

I* Initialize s[] and d[] *I 
setup ()#; 

I* Compute the results *I 
solver (Uh[] [] )#; 

I* Output the results *I 
for (i=O; i<N; i++) { 

} 

for ( j =0; j <N; j ++) 
printf("%6.2f 11

, Uh[i][j]); 

printf("\ \n''); 
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Example 4.4: exa1nples/ complexjlu.d 

I* This program computes the LU decomposition of a matrix, with partial 
* pivoting. The last row of A contains pivoting information - what 
* row was swapped with at each iteration of the algorithm. *I 

#define P 6 
#define N 14 

#include "dino.h" 

environment node[P:id] { 

#include <math.h> 
#include <stdio.h> 

composite plu (a) 

double distributed a[N+1] [N] map WrapCol; 

I* ==> Declares the variable a to be mapped 
by columns to the processors, but in 

{ 

a wrap fashion, so that each processor 
gets columns id, id+P, id+2P, ... *I 

inti, j, k; 
double piv; 
int pivrow; 
double temp; 

I* Looping variables *I 
I* Value of the pivot *I 
I* Index of the pivot *I 
I* Temporary *I 

double distributed m[N+1] map all; I* Holds the multipliers *I 

I* ==> Illustrates the declaration of local 
distributed data within a composite 
procedure. *I 

I* Loop through the passes of the algorithm *I 
for (i = 0; i < N; i++) { 

I* Check to see if we have the column for this iteration *I 
if (i 'l. p == id) { 

I* Select the pivot row *I 
piv = fabs (a[i][i]); 
pivrow = i; 
for (j = i + 1; j < N; j++) 

if (fabs (a[j] [i]) > piv) { 
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} 

} 

} 

} 

piv = fabs (a[j] [i]); 
pivrow = j; 

I* Swap in the pivot column *I 
temp= a[pivrow] [i]; a[pivrow][i] = a[i][i]; a[i] [i] =temp; 

I* Compute the multipliers *I 
for (j = i + 1; j < N; j++) 

a[j][i] I= a[i][i]; 

I* Put the pivot row into a, in preparation for sending *I 
a[N][i] = pivrow; 

I* Send out the data to the multiplier vectors on all processors *I 
m[<i+1,N>] = a[<i+1,N>] [i]; 

I* ==> Ranges may be used in assignment 
statements to perform array 
assignments. *I 

m[<i+1,N>]# {node[] - node[id]} = m[<i+1,N>]; 

I* ==> Explicit sends are indicated by putting 
an environment set in braces after the 
"#" sign. *I 

I* ==> Sends to every node but itself through 
the use of the "-" operator in the 
environment expression. *I 

else 

I* Receive the multiplier data *I 
m[<i+1,N>] = m[<i+1,N>]# {node[i%P]}; 

I* Now, we're ready to do the elimination and pivoting at the same time *I 
pivrow = m[N]; 
for (j = id; j < N; j += P) 

if (j > i) { 

} 

temp= a[i][j]; a[i][j] = a[pivrow][j]; a[pivrow][j] =temp; 
for (k = i+1; k < N; k++) 

a[k] [j] -= m[k] * a[i] [j]; 
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} 

environment host { 

} 

double a[N+1][N]; 

void main () { 

int i, j; 

I* Set up the test matrix *I 
for (i = 0; i < N; i++) { 

for (j = 0; j < N; j++) 

} 

a [i] [j] = ( i + 1) * (j + 1) ; 
a[i][i]++; 

I* Output an initial message *I 

I* Holds the matrix *I 

I* Looping variables *I · 

printf (''Starting LU decomposition ... \n\n"); 

} 

I* Call the composite procedure *I 
p 1 u (a [] [] ) # ; 

I* Printout the results *i 
printf ("Result is ... \n"); 
for (i = 0; i < N; i++) { 

} 

for (j = 0; j < N; j++) 
printf ("Y.6.1f", a[i] [j]); 

printf ("\n"); 

printf ( '' \nWi th pivots ... \n") ; 
for (j = 0; j < N; j ++) 

printf ("Y..2f ", a[N] [j]); 
printf ("\n"); 



Exan1ple 4.5: exan1plesjcomplexjblock.d 

I* This program is a fairly long example·, designed to show that complex programs 
* can be written in DINO. *I 

I**************************************************************************** 
* Solves system of linear equations with a block bordered structure 
* (See Rosin, Schnabel, and Weaver's "Expressing Complex Parallel 
*Algorithms in Dino" p. 2). 

* 
* General Form: 

* 
* A1 B xi f1 
* A2 B x2 f2 

* * = 

* Aq Bq xq fq 
* c c Cq p xqp fqp 
* 
* Where: 
* 
* A is nxn 
* B is nxm 
* c is mxm 

* p is nx1 
* X is nx1 
* xqp is mx1 

* f is nx1 
* fqp is mx1 
* 
* Command Line: 

* 
* block <filename> 

* 
* where <filename> is the name of the file describing the linear system 
* as specified in function read_data. 
***************************************************************************! 

#include <stdio.h> 
#include <math.h> 
#include <string.h> 

#include ''dino .h" 

I* ==> Standard include files can be used 
in the normal manner. *I 

I* ==> The directory containing dino.h is 
automatically searched. *I 

map byRow 
map byBlock 

= [block] [compress] ; 
= [block]; 
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map byElement 
map byCol 

= [block]; 
=[compress] [block]; 

#define N 2 
#define M 3 

#define Q 2 

environment solve[M:id] { 

composite form_J( in sumCW, P ) 
double distributed sumCW[M] [M] map byRow; 
double distributed P[M] [M] map byRow; 
{ 

int i; 
for( i=O; i<M; i++ ) 

P [id] [i] = P [id] [i] - sumCW [id] [i] ; 
}; 

composite form_b( b, in sumCz, in fqp ) 
double distributed b[M] map byElement; 
double distributed sumCz[M] map byElement; 
double distributed fqp[M] map byElement; 
{ 

b[id] = fqp[id]- sumCz[id]; 
}; 

composite dist_lu( A, RowPerm ) 
double distributed A[M] [M] map byCol; 
int distributed RowPerm[M] map all; 
{ 

double distributed Mult[M] map all; 
inti, j, k, pivrow; 
double piv, temp; 

RowPerm[M-1] = M-1; 
for( k=O; k<M-1; k++ ) { 

if( k == id ) { 
I* select pivot and swap in pivot column *I 
pi v = A [k] [k] ; 
pivrow = k; 

I* find largest row element in kth column (partial pivot) *I 
for( i=k+1; i<M; i++ ) 

if( fabs(A[i] [k]) > piv ) { 
piv = A[i] [k]; 
pivrow = i; 

} 
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} 

}; 

} 

I* swap row position in kth column *I 
if( pivrow != k ) { 

} 

temp = A [k] [k] ; 
A[k][k] = A[pivrow] [k]; 
A[pivrow] [k] = temp; 

I* calculate 1 (multipliers) and row swap info. *I 
RowPerm[k] = pivrow; 
for (i=k+1; i<M; i++) 

Mult[i] = A[i] [k] I= -A[k] [k]; 

I* broadcast Mult and RowPerm *I 
Mult[<k+1, M-1>]#{ solve(] - solve[id]} = Mult[<k+1, M-1>]; 
RowPerm[k]#{ solve[] - solve[id] } = RowPerrn[k]; 

else { 

} 

I* receive broadcast here *I 
Mult[<k+1, M-1>] = Mult[<k+1, M-1>]#{ solve[k] }; 
RowPerm[k] = RowPerm[k]#{ solve[k] }; 

I* eliminate in your colurnu1 greater than k *I 
pivrow = RowPerm[k]; 
if( id>k ) { 

} 

if( pivrow != k ) { 
temp = A [k] [id] ; 

} 

A[k][id] = A[pivrow] [id]; 
A[pivrow] [id] = temp; 

for( i=k+1; i<M; i++ ) 
A[i][id] += Mult[i]*A[k][id]; I* was k *I 

I* swap factors in lower triangular *I 
else if( id<k ) 

for( i=k; i<M; i++ ) { 
temp = A [i] [id] ; 

} 

A[i][id] = A[pivrow][id]; 
A[pivrow] [id] = temp; 

composite dist_solve( in lu, out x, in b, in RowPerrn ) 

double distributed lu[M] [M] map byRow; 
double distributed x[M] map byElement; 
double distributed b[M] map all; 
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} 

int distributed RowPerm[M] 
{ 

map all; 

}; 

double distributed y[M] 
double temp; 
int i, swap; 

map byElement; 

I* permute b according to RowPerm *I 
for( i=O; i<=M-2; i++ ) { 

} 

swap= RowPerm[i]; 
if( swap != i ) { 

} 

temp= b[i]; 
b [i] = b [swap] ; 
b[swap] = temp; 

I* solve ly = b *I 
y [id] = b [id] ; 
for( i=O; i<=id-1; i++ ) 

y [id] += lu [id] [i] *Y [i] #{solve [i]}; 
y[id]#{solve[<id+1,M-1>]} = y[id]; 

I* solve ux=y *I 
X [id] = y [id] ; 
for( i=M-1; i>id; i-- ) 

x [id] -= lu [id] [i] *X [i] #{solve [i]}; 
x[id] = x[id] I lu[id] [id]; 
x[id]#{solve[<O,id-1>]} = x[id]; 

environment node[Q:id] { 

map slice= [block][compress][compress]; 

double distributed W[Q] [N] [M] map slice; I* = A--1 B*l 
double distributed z[Q*N] map byBlock; 

I* 
* negate v of length 1 
*I 

neg_vec( v,l 
double v[]; 

I* ==> Distributed variables may be declared 
inside an environment, in which case 
they are accessable by all functions and 
composite procedures within that 
environment. *I 
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int 1; 
{ 

}; 

I* 

int i; 
for( i=O; i<=l-1; i++ ) 

v[i] = v[i] * -1.0; 

* v will contain (v - x) where v & x are 1 x 1 

*I 
sub_vec( v,x,l ) I* v <= v - x, 1 is length of vectors *I 
double v[]; 
double x[]; 
int 1; 
{ 

}; 

I* 

int i; 
for( i=O; i<=l-1; i++ ) 

v[i] = v[i] - x[i]; 

* v will contain (v - x) where v & x are 1 x 1 

*I 
add_vec( v,x,l ) I* v <= v - x, 1 is length of vectors *I 
double v[]; 
double x[]; 
int 1; 
{ 

}; 

I* 

int i; 
for( i=O; i<=l-1; i++ ) 

V [i] = V [i] + X [i] ; 

* returns (A*B) where A is mxn and B nxm and T is mxm 
*I 

mat_mat_mult(A,B,T) 
double A[M] [N], B[N][M], T[M] [M]; 
{ 

}; 

int row, col, i; 
for( row=O; row<=M-1; row++ ) 

for( col=O; col<=M-1; col++ ) { 
T [row] [col] = 0; 

} 

I* inner product *I 
for( i=O; i<=N-1; i++ ) 

T [row] [col] += A [row] [i] *B [i] [col] ; 
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I* 
* Does lu decomposition on matrix A 
* Note: o uses partial pivoting 
* o assume A is nxn since seq_lu is only used on A to find z 
* (see above mentioned paper) 
* o after call to seq_lu A will contain lu decomposition 
*I 

void seq_lu( A, p ) 
double A[N] [N]; 
int *p; 
{ 

}; 

double temp, mult; 
int i, diag, col, pivot; 
for( diag=O; diag<=N-2; diag++ ) { 

} 

I* look for largest leading row element, i.e. pivot *I 
pivot = diag; 
for( i=diag; i<=N-1; i++ ) { 

} 

if( A[i] [diag] > A[pivot] [diag] ) 
pivot = i; 

p[diag] = pivot; 

I* new pivot found? *I 
if( pivot != diag ) { 

} 

I* information about row swaps stored in p such that 
p[diag] = pivot means that row pivot and diag were 
swapped at diagth iteration *I 

for( i=O; i<=N-1; i++ ) { I* swap rows *I 
temp= A[diag][i]; 
A[diag] [i] = A[pivot] [i]; 
A[pivot][i] =temp; 

} 

I* elimate leading columns *I 
for( i=diag+1; i<=N-1; i++ ) { 

I* compute 1 *I 

} 

mult = A[i] [diag] I= -A[diag] [diag]; 
for( col=diag+1; col<=N-1; col++ ) 

A[i][col] += mult*A[diag] [col]; 

p[N-1] = N-1; I* last row can't be swapped at last iteration *I 
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* solves: lux = b 
* Note: o lu is nxn (see seq_lu) and naturally x, b are 1xn 
* o result found in x after call to seq_solve 
*I 

void seq_solve( lu, x, b, p ) I* solves lu x = b *I 
double lu [N] [N] ; 
double x[N]; 
double b [N] ; 
int p [N]; 
{ 

}; 

int i, col, diag; 

double y[N]; 
double temp; 

I* solve ly = b *I 
for( diag=O; diag<=N-2; diag++ ) { 

} 

if( p[diag] != diag ) { 
temp= b[diag]; 
b[diag] = b[p[diag]]; 
b[p[diag]] = temp; 

} 

y [0] = b [0]; 
for( diag=1; diag<=N-1; diag++ ) { 

y[diag] = b[diag]; 

} 

for( col=O; col<=diag-1; col++ ) 
y[diag] += lu[diag] [col]*y[col]; 

I* solve ux=y *I 
x[N-1] = y[N-1]Ilu[N-1][N-1]; 
for( diag=N-2; diag>=O; diag-- ) { 

x[diag] = y[diag]; 

} 

for( col=diag+1; col<=N-1; col++ ) 
x[diag] -= lu[diag] [col]*x[col]; 

x[diag] I= lu[diag][diag]; 

composite factor_A(in A, in f, in B) 
double distributed A[Q] [N] [N] map slice; 
double distributed f[Q*N] map byBlock; 
double distributed B[Q] [N] [M] map slice; 
{ 

int i,r; 
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}; 

int p [N]; 
double tempW[N]; 
double tempB[N]; 

I* decompose each block *I 
seq_lu(A[id], p); 
seq_solve(A[id], &z[id*N], &f[id*N], p); I* z =A inv f *I 

for (i=O; i<M; i++) { I* W = A inv B *I 
tempE[] = B [id] [] [i] ; 
seq_solve(A[id], tempW, tempE, p); 
W [id] [] [i] = tempW [] ; 

} 

composite form_sums( inC, out sumCW, out sumCz ) 
double distributed C[Q][M] [N] map slice; 
double distributed sumCW[M] [M] map byRow; 
double distributed sumCz[M] 
{ 

double T[M]; 
double T2[M]; 
double Temp[M] [M]; 
int 1; 
int r,c; 

map byElement; 

I* sum C*W = J*l 
mat_mat_mult(C[id], W[id], Temp); 

Temp[][] = gsum( Temp[][] )#; 

for( i=id*MIQ; i<=id*MIQ + MIQ; i++) { 
sumCW [i] [] = Temp [i] [] ; 

} 

if( id==Q-1 ) { 
sumCW [M/.Q+ 1] [] = Temp [M/.Q+ 1] [] ; 

} 

I* sum c*z *I 
for( r=O; r<=M-1; r++ ) { 

T [r] = 0; 

for( c=O; c<=N-1; c++ ) 
T [r] += C [id] [r] [c] * z [id*N+c] ; 

} 

T2 [] = gsum (T [] ) #; 
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} 

}; 

for( i=id*M/Q; i<=id*M/Q + M/Q; i++) 
sumCz[i] = T2[i]; 

if( id==Q-1 ) 
sumCz[M/.Q+1] = T2[M/.Q+1]; 

composite compute_xi( in xqp, out x ) 
double distributed xqp[M] map all; 
double distributed x[Q*N] map byBlock; 
{ 

}; 

int r,c; 

for( r=O; r<=N-1; r++ ) { 
x[id*N+r] = 0; 
for( c=O; c<=M-1; c++ ) 

x [id*N+r] += W [id] [r] [c] *Xqp [c] ; 
} 

neg_vec( &x[id*N], N ); 
add_vec( &x[id*N], &z[id*N], N ); 

environment host{ 
double A [Q] [N] [N] , B [Q] [N] [M] , C [Q] [M] [N] , P [M] [M] , 

fqp[M], f[Q*N], xqp[M], x[Q*N], b[M], RowPerm[M], sumCW[M][M], 
sumCz[M]; 

FILE *InFile; 
char filename[256]; 

void read_dvector( InFile, v, size ) 
FILE *InFile; 
double *v; 
int size; 
{ 

}; 

int i; 
double temp; 

for( i=O; i<=size-1; i++ ) 
fscanf ( InFile, "/.lf\n", &v [i] ) ; 

void read_dmatrix( InFile, m, row, col ) 
FILE *InFile; 
double *m; 
int row, col; 
{ 

int r, c; 
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for( r=O; r<=row-1; r++ ) 
read_dvector( InFile, (double*) (m+r*col), col); 

}; 

void read_dmatrices( InFile, ms, size, row, col ) 
FILE *InFile; 
double *ms; 
int size, row, col; 
{ 

int i; 

for( i=O; i<=size-1; i++ ) 
read_dmatrix( InFile, (double*) (ms+i*row*col), row, col); 

}; 

I* 
* read_data reads an ascii file containing the linear system. 
*File must be in the following form (n, m, q must be set in program): 

* 
* A1 <CR> 
* 
* Aq <CR> 
* B1 <CR> 
* 
* Bq <CR> 
* C1 <CR> 

* 
* Cq <CR> 

* P <CR> 
* f <CR> 

* fqp <CR> 

* 
* Note: 

* 
* Matrices must be listed in row order. 

* 
*I 

void read_data( ) 
void; 
{ 

}; 

InFile = fopen( filename, "r" ) ; 
read_dmatrices( InFile, A, Q, N, N ); 
read_dmatrices( InFile, B, Q, N, M ); 
read_dmatrices( InFile, C, Q, M, N ); 
read_dmatrix( InFile, P, M, M ); 
read_dvector( InFile, f, Q*N ); 
read_dvector( InFile, fqp, M ); 
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} 

print_results() 
{ 

}; 

int i, ii; 

printf( "Solution to System: \n" ); 

I* print xi to xq *I 
for( i=O; i<=(Q*N)-1; i++ ) 

printf ( "'l.lf\n 11
, x [i] ) ; 

I* print xqp *I 
for( i=O; i<=M-1; i++ ) 

printf ( 11 'l.lf\n••, xqp [i] ) ; 

void main( argc, argv ) 

int argc; 
char *argv[]; 
{ 

} 

I* parse command line *I 
if( argc > 1 ) 

strcpy(filename,argv[1]); 
else { 

} 

printf ( 11 ERROR: No file name specified. \n" ) ; 
return; 

strcpy(filename, 11 input .dat••); 

read_data(); 
factor_ A ( A [] [] [] , f [] , B [] [] [] ) # ; 
form_sums( C[][][], sumCW[][], sumCz[])#; 
form_J ( sumCW [] [] , P [] [] ) #; 
form_b( b[], sumCz[], fqp[] )#; 
dist_lu ( P [] [] , Row Perm[])#; 
dist_solve( P[][], xqp[], b[], RowPerm[])#; 
compute_xi(xqp[], x[])#; 
print_resul ts (); 
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Example : examples/ complexjinput.dat (data file for block. d) 

1.0 3.0 
2.0 9.0 
8.0 6.0 
1.0 7.0 
1.0 8.0 9.0 
5.0 4.0 3.0 
1.0 1.0 2.0 
2.0 1.0 3.0 
9.0 4.0 
8.0 5.0 

3.0 7.0 
6.0 3.0 
4.0 2.0 

5.0 1.0 
2.0 6.0 1.0 
1.0 5.0 2.0 
7.0 6.0 4.0 
5.0 4.0 
2.0 3.0 
5.0 8.0 7.0 
(data file for block.d) 
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5 How to use DINO 
5.1 Overview 

The DINO compiler takes a program file written in the DINO language, and converts 
it into one or more C programs, one for each environment structure in the DINO 
program. In addition, DINO is normally set up to move these C files to the appropriate 
parallel machine and compile them into executables which can be run on that machine. 
The DINO compiler will run on a sun3 or a sun4. The following sections describe how 
to invoke the compiler, how to control the default options by using environment 
variables, and how to manually control the copying and subsequent compilation of 
the intermediate C files. 

5.2 Setting up 

In order to use DINO, you must have the correct path to the DINO compiler. DINO 
uses the sun convention that binaries are kept in architecture-specific directories such 
as: -dino/bin/sun3 or -dino/bin/sun4. 

For this to work correctly, you must have set the environment variable 
"ARCHTYPE" to the appropriate architecture. This can be done using the command 

setenv ARCHTYPE 'arch' 

Once this is done, the necessary DIN 0 directory can be added to your path with the 
command 

set path= ($path <path> /bin/${ARCHTYPE}) 

where <path> is the full path name to the master DINO directory (if you don't know 
where that is, see your system administrator). 

These commands should be placed in your .cshrc or .login file, after the path 
is set up. If this is not done correctly, DINO will fail in mysterious ways. 

In addition, a similar "ARCHTYPE" variable must be set up on the parallel 
machine which you're going to use. This is used so that the DINO compiler knows 
what libraries to link with on the target machine. It also controls options passed to 
the C compiler. A command such as 

setenv ARCHTYPE <rnachtype> 

should be inserted in your .cshrc file (not the .login file - because the .login file isn't 
looked at when rsh is used) on the target machine, where <machtype> is either iPSC1, 
iPSC2, or i860 as appropriate. 

Finally, if you want to use the facility for copying the intermediate C files to 
the target machine and compiling them there, you need to have appropriate permis
sions set up on the parallel machine to allow for this. Normally, this n1eans having 
appropriate entries in your ".rhosts" file on the parallel machine. Consult your systern 
administrator for assistance. 
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5.3 Invoking the Compiler 

The dino compiler is invoked by using the following command: 

dino [-<machine>] [ -w] [ -c] [ -n] [ -e] [ -1] [ -o] [ -p] 
[-D] [-P] [-Q] [-h[elp]] [-s <suffix>] [-C <num>] 
[ -d <directory>] [ -u <user> [-I <directory>] <file> 

If dino is typed alone (or with the -D or -h options), then a list of options is printed 
out. Otherwise, DINO compiles the given file (which must have the . d extension) into 
one or more C files, and may optionally send these C files to the parallel machine, 
and compile them. Options to the compiler which are boolean (for example, -w) may 
be turned off by inserting a "_,; for example, the option "- -w" turns on warning 
messages. Compiler options may be listed an any order, and are described below: 

-<machine> Generates code for the given parallel machine. This option sets up all of the 
default options for the given machine. The appropriate <machine> to use should 
be given to you by the system administrator. For example, if you want to compile 
a prograrn prog. d for a machine named mach, the appropriate command would 
be 

dino -mach prog.d 

-D This option causes DINO to list each of the parallel machines defined, along with 
the options specified by them. Any of these options can be overridden by a 
command line option. 

-w Suppresses the printing of warning messages from the DINO compiler. 

-c Causes DINO to print out comments from the compiler. There are no useful 
con1ments produced by the DINO compiler at this time. This option is present 
for future versions of the compiler. 

-n Causes the DINO compiler to print out notes from the compiler. There are no 
useful notes produced by the DINO compiler at this time. This option is present 
for future versions of the compiler. 

-e Causes the DINO compiler to print out errors in the order in which the compiler 
detects them, rather than in lexical order. This is useful because the compiler 
will occasionally report a cascaded error before the actual error. 

-o Causes the compiler to use the old suffix model, producing files of the form 
<env><suffix>. c, where the default <suffix> is 01, D2, D8, S1, S2, or G, depend
ing on the kind of machine you're compiling for. Normally, files are named 
<prograrn>. <suffix>. <env>. c, where <program> is the name of the DINO program 
being compiled (without the . d suffix), < env> is the name of the environn1ent, 
and the default <suffix> is the name of the machine being cornpiled for. The 
<suffix> can be changed by using the -s option. 
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-s <suffix> Sets the <suffix> used to construct filenames for the intermediate C files. See the 
-o option. 

-P This option causes DINO to stop just after generating the intermediate C files, 
without copying them to the parallel machine. 

-p This option causes DINO to generate the intermediate C files, and copy them to 
the parallel machine, but not compile them. This option is useful when custom 
flags must be sent to the C compiler on the parallel machine. 

-Q Prevents DINO from producing any output, except from error messages. Notice 
that this option has no effect on the C compiler invoked by DINO so if the C 
compiler prints out any messages (like the C compiler on the iPSCl ), they will 
still be printed out. 

-h [elp ] Prints out a list of available options, with brief descriptions. This action is 
also taken is no filename is given. 

-C <num> Sets the dimension of the cube being compiled for. It is up to you to insure that 
this many nodes are actually provided when the program is run. 

-d <directory> Tells DINO where to put your executable files. This option accepts either relative 
or absolute pathnames. The system administrator has defined a default "base" 
directory when DINO was set up. The relative path names are always with 
respect to this "base" directory. In a typical installation, the "base" directory 
would be the directory you are in if the parallel machine is a local machine, and 
your home directory on the parallel machine if the parallel machine is a remote 
machine. The "-d" option interprets a "." which is the first character in a 
pathname as the current directory (this only works if the file system you're using 
is cross mounted). So, if you want your final files to appear in a subdirectory (of 
your current directory) named "test", you would use· the command 

-u <user> 

-I <directory> 

dino -mach -d ./test row.d 

where "mach" is a parallel machine which mounts your files. If the directory 
does not exist, DINO will create it automatically. 

Use the "-u" option if you want to execute commands on a remote parallel 
machine as someone other than the default user (usually, the default user will be 
the same as the user of the local machine). Note that the <user> must have a login 
on the parallel machine. Typing "-u _, sets the user on the parallel machine to 
the the same as the current user on the local machine. If the parallel machine 
is the same as the local machine (for example, a simulator or a distributed sun 
network) then "-" is the only user that the "-u" option will accept. 

This option tells DINO what directory to find include files in. Nfore than one 
"-I" option rnay be used. 
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5.4 Using Environment Variables 

Anything (except the name of the DINO source file) which can be set from the com
mand line can also be specified as an environment variable. This gives the user 
considerable control over the default settings of the DINO compiler. In addition, 
many of the defaults can be set differently for different parallel machines (assuming 
that your DINO compiler has been configured form more than one parallel machine). 

In the following descriptions, <name> stands form the name of a partic
ular parallel machine. For example, if you have an iPSC2 named "mach", then 
D<name>size for mach would be "Dmachsize". Obviously, the use of <name> in an 
environment variable indicates that a separate default can be set for each parallel 
machine. The various environment variables are: 

Dmachine The default parallel machine that will be used if no machine is specified on the 
command line. 

Dine List of directories which DINO will look in for include files. Corresponds to the 
"-I" command line option. Multiple directories are separated by spaces, tabs, 
or newlines. 

D<name>size The default cube size for the parallel machine <name>. Corresponds to the "-C" 
command line option. 

D<name>suf The default suffix for the parallel machine <name>. Corresponds to the "-s" 
command line option. 

D<name>dir The default directory on the parallel machine <name>. Corresponds to the "-d" 
command line option. 

D<narne>usr The default user on the parallel machine <name>. Corresponds to the "-u" 
command line option. 

D<name>opt A list of one or more boolean options for the parallel machine <name>. The "-" 
characters from the command line are omitted, but "-" may be used to negate 
an option. For example, the string "o-nQ" causes the compiler to use the old 
suffix model, not print notes, and produces quiet output. 

5.5 Doing Things Manually 

DINO depends on the UNIX commands "rep" and "rsh" to copy intern1ediate C files to 
the remote parallel machine and to compile them there. If these commands don't work 
on your system, then you will have to do son1e or all of this manually. In addition, 
DIN 0 does not allow you to specify options to the C compiler on the parallel machine 
other than the default options used by DINO. If you want more control over the C 
compilation, you will have to do this step rnanually. 

You can stop DINO after the intermediate C files are created (the "-P" 
option), or after the intern1ediate C files are copied to the parallel machine (the "-p" 
option); see Section .5.3. 
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You can have DINO compiler the intermediate C files on the parallel machine 
with the command 

dino2 <filenames> 

where <filenames> is a list of all the intermediate C files. DINO will expect those 
filenames to follow the default conventions for DINO suffixes. The "dino -p" com
mand puts files with the appropriate names on the parallel machine. The "dino -P" 
command creates files with the correct names in the current local directory, with the 
exception of files for the iPSCl and iPSC2 when the new suffix model is used. In that 
case, the file name in the current directory might be "row.mach.node.c", but DINO 
expects to see "node.c" on the parallel machine (Intel's machines do not support 
filenames longer than 14 characters). 

Of course, you can write your own Makefile to control compilation on the 
parallel machine. 

6 DINO Hints 
6.1 Known Compiler Bugs 

The following is a list of known compiler bugs. These will hopefully be fixed in a 
future version of DINO. 

1. You cannot do a send to an explicitly specified destination where the value is 
a constant; the C programs generated by the DINO compiler will not compile. 
Example: 

int distributed A[10] map Block; 

a[5]# {node[1]} = 1; 

will not work. 

2. Scalar environment declarations (other than the host) do not work now. Exam
ples: 

environment single { . } 
environment one[1] { . } 

won't work properly. 

3. Reduction functions where the reduction is done over only one environment do 
not work properly. For example: 

A = gsum(B)# {node[id]}; 

will not work. 

4. Statements that mix range assignments with multiple assignn1ents do not work 
properly. The staten1ent 
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A[<5,12>]# {node[1]} = A[<5,12>] = B[]; 

will not run correctly. If you use a range assignment, put only one assignment 
in a statement. 

5. It turns out that there are some unforeseen limitations on the way you can specify 
ranges in send/receive pairs. While most pattern combinations work, you cannot 
specify one half of a pair as a single and the other half as a partial range. That 
is, the send/receive pair 

A [b] [] # = 

= A[<c,d>] []#; 

will not work properly. However, 

A[] [] # = . . . 
. . . = A [ < c , d>] [] # ; 

or 

A [b] [] # = 

= A[] [] #; 

will work. 

6. Three dimensional (or higher) environment structures do not work properly. 

7. If you are constructing your own mapping functions, the primitive operation 
"align" doesn't work properly in the case of a 1 x N or N x 1 data structure 
(there are some special cases where this kind of data structure is useful.) Rather 
than using "align", transpose the data structure. 

8. DINO is quite good at only sending or receiving the proper data elements (in the 
completely implicit case) even if you overspecify the data to be sent or received. 
However, there is one obvious case that will not be handled properly. If you have 
a data structure which is partitioned (i.e., not distributed "all"), and you send 
it with "A[] [] # = . . . " or receive it with ". . . = A[] [] ", it will not work 
properly. 

9. We have had some trouble with complex expressions on some machines. DINO 
translates sends and receives into more complex expressions. Sometimes the C 
compilers on target n1achines can't cope with them. For exan1ple: 

A[idx] [idy]# = ((right?A[idx][O]:A[idx] [idy-1]#) + 
(left?A[idx] [N-1] :A[idx] [idy+1]#) + 
(top? A [0] [idy] :A [idx-1] [idy] #) + 
(bottom?A[N-1] [idy] :A[idx+1] [idy]#) I 4); 

111 



translates into a C expression that won't compile on our iPSCl and causes the C 
compiler on our sun3 (when we are using the iPSCl simulator) to make an error 
in the expression evaluation. Beware of anything approaching this complexity. 

10. Certain sends and receives do not work properly. They are those sends and 
receive in which 

1) you explicitly specify the source or destination environment, 

2) the data object (with any message header generated by the compiler) is 
greater than the DINO's message buffer size (16K on the iPSCl, 32K on the 
other cubes), and 

3) the compiler thinks that storage for the whole piece of data (of the correct 
type) doesn't exist on the node. 

So, for example, if A[lOO](lOO] is a float and B[lOO)[lOOJ is a double distributed 
which is not mapped entirely to your node, the statement 

B [] [] # {node [ 0] } = A[] [] ; 

will not send out the whole piece of data (it only sends the first message buffer). 
The place where this gets tricky is that if B[100](100] is a double distributed that 
is mapped to your node, then if you write 

B[] []# {node[O]}; 

the compiler won't figure out that storage exists on your node and thus doesn't 
do the receive properly. However, 

B [] [] = B [] [] # {node [ 0] } ; 

will work properly. 

11. If you use a range as a parameter to an ordinary C function, the DINO compiler 
will not catch it. Instead, it generates C code with no parameter in that position. 
If there is more than one parameter to that function, the code will be syntactically 
incorrect and the resulting C compilation will fail. 

12. DINO allows you to specify a range in a larger data array as the actual parameter 
so long as the dimension and size( s) of the range is the same as the dimension 
and size( s) of the formal parameter. However, if the dimension of the larger data 
structure is higher than the dirnension of the formal parameter, this will not work 
properly in most cases. 

For example, the composite procedure call comp (A [ <3, 6>] [2]) #will not work 
if the formal parameter is declared to be a one dimensional vector of length L1. If 
the formal parameter is two dimensional ( 4 x 1 ), it will work properly. 
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6.2 What the Compiler Doesn't Do (run-time checking) 

In general, the DINO compiler and run-time library do very little in the way of run
time checking. The only errors which are checked for at run-time are the following: 

• Implicit send called for data that has no copies 

This message indicates that the DINO program tried to send data which had 
no copies on other environments. Usually, this occurs either because the wrong 
mapping function was chosen, or because the wrong piece of the data structure 
is being sent (incorrect ranges are a common cause). The program continues 
running after this warning message. 

• Implicit receive called for data that is only home data 

This message indicates that a receive has been done on data which is home 
data, and thus has no home to receive from. This usually occurs either because 
the wrong mapping function was chosen, or because the wrong piece of the data 
structure is being sent (incorrect ranges are a common cause). The program 
continues after this warning. 

These are the only errors which are caught by DINO. The following errors, while not 
caught by the DINO run-time system, should be watched for carefully: 

1. Ranges in which the left number is larger than the right. An example of this is 
A [ <4, 3>] #. These errors can creep in when writing programs designed to work 
on arbitrary sized data structures; if the size of arrays becomes smaller than the 
number of processors, these "backwards ranges" can occur. 

2. Mismatched sends and receives cannot be caught by DINO. If your program seems 
to infinite loop, chances are that your sends and receives are not matching up 
properly. 

3. DINO does no range checking. That is, references to distributed arrays that are 
less that zero or greater than the size of the array will not be flagged in DINO. 

4. DINO does not check that a local reference to a distributed data structure is 
actually mapped to that particular environment. 

5. DINO does not check those parts of range assignments that can only be known 
at run tin1e. Thus, you can assign ranges that are not the same sizes (with, of 
course, unpredictable results.) 
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6.3 Performance Hints 

The following is a list of suggestions on how to achieve the best performance from 
DINO. The list has been kept short, and only discusses DING-specific issues. 

1. Use of environment structures which have more environments in them than your 
cube has processors are implemented by running multiple processes on each node 
of the cube. As a result, performance is significantly impaired. If the total 
number of environments (in all environment structures) is less than or equal to 
the number of nodes, then they are distributed so that each node gets at most 
one environment. 

2. When performing remote references, it is more efficient to do block communi
cations than to send and receive individual values, as DINO sends one or more 
messages for each communications statement. 

3. In addition, it is somewhat more efficient to include sends or receives to multiple 
environments in a single statement, where DINOallows this. This can occur in 
implicit communications, when a data structure has multiple overlaps, and in 
explicit communications. 

4. Since composite procedure calls must distribute their parameters (and retrieve 
results), minimize the use of parameters. Data which should remain in the same 
environment structure over multiple composite procedure calls should be declared 
as a variable within that environment. 

5. When referencing a distributed array, DINO allows the user to refer to the global 
name of an object, even when only a piece of that object is present in the en
vironment referring to the object. As a result, DINO must translate the global 
indices provided by the program into local indices. This process can be somewhat 
time-consurning, particularly for wrap mappings. C compilers with sophisticated 
optimization routines will remove many of these computations from within loops, 
but we haven't seen any C compilers that do this for the supported machines. 

6. When doing sends and receives, it is faster if the data to be sent (or received) 
from each environment resides in a contiguous piece of memory. In some cases, 
interchanging the axes of a data structure (in order to make the communicated 
pieces contiguous) can have dramatic effects on execution time. 

7 Installation Notes 

If your copy of DINO has not already been installed, this section of the manual should 
show you how to accomplish that. If you have problems, feel free to contact us at 
dino©cs.colorado.edu. 

The DINO compiler is divided into two parts: A front end, which runs on a 
Sun workstation, and a back end, which runs on the parallel machine (this could be 
the same machine in the case of a simulator or sun network). 
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7.1 Installing the Front End 

This section describes how to install the front end of DINO and how to configure it 
for your parallel machine( s). 

7.1.1 Where to Install DINO 

DINO is designed to be installed with its own user name (dino) in it's own directory. 
It is possible to do it in other ways, but some of the procedures in this manual will be 
incorrect for other kinds of installations. If you need to do a non-standard installation, 
contact us for more information. 

Once you have the "dino" username set up, change to dino's home directory. 
You should either have a tape with DINO on it, or a compressed, tar'd file you obtained 
via FTP. If you have a tape, untar it in DINO's home directory. If you have a file, 
move it to DINO's home directory, uncompress it, and then untar it. 

7.1.2 Reading the README file 

Before continuing with the installation, be sure to read the README file in order to 
check for changes to this installation procedure. 

7.1.3 Setting up the DINO System Files 

DINO assumes that the shell is csh. If you have to use sh, some of the procedures 
here won't work exactly as written. 

DINO uses the convention that binary files are kept in architecture specific 
directories, such as dino/bin/sun3. In order to make this work, DINO must know 
what kind of machine it's running on, both on the Sun workstation, and the parallel 
machine being used. On the Sun, insert the command 

setenv ARCHTYPE carchc 

into your .cshrc file. On the parallel machine, a commands such as 

setenv ARCHTYPE iPSC1 

must be inserted in the .cshrc file. The other architectures would use "iPSC2" and 
"i860". 

Notice that if your file system is cross mounted, then the .cshrc file must 
determine if it's logged onto the parallel machine or a sun workstation, and set 
ARCHTYPE appropriately. 

Once ARCHTYPE is set up, the DINO path is added with: 

set path= ($path <Dl!VO> /bin/${ARCHTYPE}) 

where <DINO> is the full path name to the master DINO directory. This must be 
done in your .cshrc file, because commands run via "rsh" don't look at the .login file. 

Several exarnple .cshrc files are provided in the - dino/ setup directory -
cshrc.sun, cshrc.ipsc, and cshrc. both (used for cross mounted horne directories). 
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If your site has a Pascal compiler, make sure it is in the path. Also, the 
.rhosts file on the parallel machine must be set up so that DINO can run "rep" and 
"rsh" on the sun to copy files to the parallel machine and run commands there. 

Finally, create a .forward file in the dino home directory which contains the 
line "dino@cs.colorado.edu". This will allow users to send mail to "dino" on their 
Suns, and it will be forwarded to us. 

7 .1.4 How to Generate the Front End 

Once you have modified your .cshrc file, log out and log in as dino. Then simply type: 

make compiler 

This should install the front end of the DINO compiler. If you have both Sun3 and 
Sun4 workstations, you will have to do this once for each kind of workstation. 

7.1.5 Configuring the Front End 

DINO is actually a Bourne shell script, "dino", which calls a number of executable 
programs, including the actual compiler. In order to allow DINO to work with a large 
number of parallel machines, DINO reads the configuration file "dino.init" every time 
it starts up. This section describes how to construct this file. 

We have provided an example configuration file, "dino.init.example". Copy 
this file into "dino.init", and edit it. Then make the following changes. 

1) Set the environment variable Dhome to the home directory for dino. 

2) Set the environment variable Dine to the appropriate list of include directories. 
Multiple directories should be separated by spaces, tabs, or newlines. 

3) Define each parallel machine you wish to support. Notice that multiple "virtual" 
machines can be defined for each real machine. For each virtual machine, five 
words are added to the Dmachs variable. The exact details on how to do this 
are in comments in the "dino.ini t" file. In addition, the specialized variables 
sD<narne>suf and sD<narne>opt can be used to specify additional defaults for 
the virtual machine being defined. Setting sD<name>suf allows you to set the 
default suffix for the parallel machine <name> (see the "-s" command option in 
Section 5.3). Setting sD<name>opt allows you to set one or more of the boolean 
options for the parallel machine. The format is the san1e as for D< name> opt (see 
Section 5.4). 

4) Define the sDmachine variable to be default virtual machine (which will be used 
if the dino command line doesn't specify a machine). 

5) :Nfake sure all the objects you defined are listed in the final export staternent. 

In order to make configuration easier, the DINO compiler provides an option which 
will print out the current configuration. In order to do this, type the comrnand 

dino -D 
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7.2 Installing the Back End 

This section describes how to install DINO's back end onto a target parallel machine. 
This process must be repeated for each parallel machine you plan to use. 

7.2.1 Where to Install DINO 

As on the Suns, DINO is designed to be installed in its own home directory on the 
parallel machine. If your files are cross-mounted to the parallel machine( s) and the 
same directory is DINO's home directory on both the Sun and the parallel machine(s), 
then you are done with this part. Otherwise, 

1) Create a dino account on the parallel machine. 

2) Copy -dino/<machine type> from the Sun to -dino/Makefile on the parallel 
machine, where <machine type> is either iPSC1, iPSC2, or i860. 

3) Log in as "dino" on the parallel machine, and type 

make directories 

4) Copy the contents of the directories 

-dino/<machine type>/Makefile, 
-dino/source/inc, 
-dino/source/library,and 
-dino/source/dino2 

to the directories of the same name on the parallel machine. 

7.2.2 Setting up the DINO System Files 

If you followed the instructions in Section 7.1.3, then this is already done. 

7.2.3 How to Generate the Back End 

Log in on the parallel machine as "dino", change to the <machine type> directory, 
and type 

make all 

7.2.4 Configuring the Back End 

As with the front end of DINO, the back end is controlled by a Bourne shell script 
( "dino2"). This script uses two other shell scripts to determine your particular setup: 
"dino2.init" and "dino2.<name>", where <name> is the virtual machine name. Both 
of these files should be in dino/bin/local on the parallel machine. Example files 
"dino2.init.example" and "dino2. < m,achine type> .example" have been pro\·ided as a 
starting point. 

To set up the "dino2.init" file, copy the example file to "dino2.init". Then 
make the following changes: 
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1) Set the environment variable Dhome to the home directory for dino. 

2) Set four default parameters. These are only used when dino2 is invoked di
rectly from the command line. These variables are described in the example file 
"dino2.init.example" 

The "dino2. <name>" file contains information on options and libraries used 
to compiler the intermediate C files into executables. We have provided examples for 
"plain vanilla" cubes under the name "dino2. <name> .example". Each file sets eight 
environment variables, which are described in the example files. 

If you find that the variables provided cannot be made to work for the way 
you want to set things up, contact us. 

7.3 Complex Sun/Parallel Machine Interactions 

In some cases, a parallel machine is configured in a way which doesn't "fit" the 
DINO script model. For example, we've encountered an iPSC2 for which "rsh" and 
"rep" commands must be done from one particular Sun. To allow for these kinds of 
special cases, we allow you to define a particular parallel machine as "special" (see 
the "dino.init" file). This will cause DINO to ignore the normal actions after the 
intermediate C files are generated, and instead, attempt to execute the Bourne shell 
code found in the "dino.special" file in - dino/bin/local 

We've provided a skeleton file "dino.special.example", which shows how to 
have special code for more than one machine. If you need to use this feature, you are 
on your own. If you need additional information, feel free to contact us. 

7.4 Updates 

Each DINO installation should include a "SPECS" file in the DINO home directory on 
the Sun. This file describes your particular configuration, and the date of distribution. 
If you contact us with this information, we can supply you with an update that 
includes only changes since your last installation. Alternatively, you can obtain an 
entirely new installation, and simply reinstall it. 

In order to install a new update of DINO, the same procedure is used as for 
the initial installation, except that you should not have to reconstruct the configura
tion files. 
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A EBNF Specification for DINO Extensions to C 

This EBNF specification uses the following notation: 

Program: 

() precedence grouping 
[] optional 

* zero or more 
+ one or more 

alternatives 
: : = is replaced by 
I I one or more separated by 

Terminals are enclosed in single quotes 
Non-terminals are in capitals 

PROGRAM : := ( ENVIRONMENT I MAPPING_FUNCTION I DATA_DEFINITION )+. 

Environments: 

ENVIRONMENT :: = 
'environment' IDENTIFIER DIMENSION* '{' EXTERNAL_DEFINITION+ '}'. 

DIMENSION::= '['EXPRESSION [ '·' IDENTIFIER] ']'. 

EXTERNAL_DEFINITION ::= 
FUNCTION_DEFINITION I DATA_DEFINITION MAPPING_FUNCTION. 

Composite Procedure Declarations: 

FUNCTION_DEFINITION : := 

'composite' IDENTIFIER'(' [COMP_PARAMETER_LIST] ')' 
FUNCTION_BODY. 

COMP PARAMETER LIST ( ['in' I 'out'] IDENTIFIER) I I 

Composite Procedure Call: 

STATEMENT : : = 

( ) 

' . 

IDENTIFIER'(' [ EXPRESSION_LIST] ')' '#' [ '{' ENV_EXP '}'] 
[ ' : : ' STATEMENT ] . 

ENV_EXP : := EXPRESSION. 

Distributed Data Declaration: 
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DECLARATOR : : = 

[ 'asynch' ] 'distributed' DECLARATOR 
( '[' CONSTANT_EXPRESSION ']' )+MAPPING. 

MAPPING : := 'map' ( 'all' I IDENTIFIER I (( IDENTIFIER IDENTIFIER ) 
II 'map' ) ) . 

Distributed Data Use: 

EXPRESSION :: = 
PRIMARY '#' [ '{' ENV_EXP [ 'from' EXPRESSION] '}' ] . 

ENV_EXP : := 'caller' I EXPRESSION. 

Subarrays and Ranges: 

PRIMARY::= PRIMARY ( '[]' I '[<'EXPRESSION ( ) , EXPRESSION >]' ). 

Nlapping Functions: 

MAPPING_FUNCTION ::= 
'map' IDENTIFIER'=' ( '[' MAP_TYPE [ALIGN] EXPANSION* ']' )+. 

MAP_TYPE : := 'all' 'compress' I BLOCK_MAP WRAP_MAP. 

BLOCK_MAP : : = 
'block' [ 'overlap' [ EXPRESSION]] [ 'cross' 'axis' EXPRESSION]. 

WRAP_MAP : := 'wrap' [ EXPRESSION]. 

ALIGN : := 'align' 'axis' EXPRESSION. 

EXPANSION : := 'expand' 'axis' EXPRESSION. 

Reduction Functions: 

PRIMARY : := 
REDUCTION'(' EXPRESSION [ ','EXPRESSION] ')' '#' 
[ '{' ENV_EXP '}' ] . 

REDUCTION :: = 

'gsum' I 'gprod' I 'gmin' I 'gmindex' I 'gmax' I 'gmaxdex'. 

A Note on C Syntax: 
In standard C, a PROGRAM consists of one or more EXTERNAL_DEFINITIONs, 

each of which can be a FUNCTION_DEFINITION or a DATA_DEFINITION. DINO compli
cates this somewhat by adding environments. 
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C DATA_DEFINITIONs are built from DECLARATION_SPECIFIERs (e.g., int, 
struct A int B; char C, etc.), followed by DECLARATORs, followed by INITIALIZERs. 
The DECLARATOR is an IDENTIFIER, optionally nested inside one or more "*", "()", 
or "[]" to designate respectively a pointer to, a function returning, or an array of. 
DINO allows a single distributed declaration in this nesting to designate a particular 
DATA_DEFINITION as distributed. 

Ordinary C FUNCTION_DEFINITIDNs are built by concatenating an optional 
TYPE_SPECIFIER, a FUNCTION_DECLARATOR (which includes the parameter list) and 
a FUNCTION_BODY (which includes the parameter declarations). DINO uses a simpler 
syntax for composite procedures. 

Certain types of C EXPRESSIONs are called PRIMARYs to distinguish then 
from the larger class of all EXPRESSIONs. 
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home environment, 30 
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remote reference 

efficiency of, 114 
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shared between multiple 

environments, 29 
use, 30 

distributed data structures, 3, 26 
"distributed" keyword, 28 
EBFN specification, 119 
efficiency, 114 
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in reductions, 34 
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in sends, 32 
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122 



environment set 
implicit specification, 31 

environment sets 
in reductions, 34 
in remote references, 31, 32 

environment structures 
mapping onto real processors, 25 
scalar environments, 25 

environments, 24 
mapping to real processors, 26 

envvar (type used with "from"), 32 
examples, 39 

complex examples, 82 
"Hello vVorld" programs, 42 
index of features, 39 
matrix matrix multiplication 

walkthrough, 13 
matrix vector multiplication 

walkthrough, 9 
matrix vector multiply examples, 4 7 
smoothing algorithms, 64 

explicit communication, 16, 19 
environment expressions, 25 
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in matrix matrix multiplication, 19 · 
"from" keyword, 32 
functional parallelism, 4, 25, 27 
gmax() reduction function, 33 
gmaxdex() reduction function, 33 
gmin() reduction function, 33 
gmindex() reduction function, 33 
gprod() reduction function, 33 
gsum() reduction function, 33 
home data, 30 
home environment, 6, 35 
host environment, 24, 25 

in matrix matrix multiplication, 21 
in matrix vector multiplication, 11 

"in" keyword (call by value), 26 
use with nondistributed variables, 27 

installation, 114 
main() function, 24, 25 

in matrix matrix multiplication, 21 
in matrix vector multiplication, 11 

"map" keyword, 28 

mapping functions, 5, 6, 24 
"align", 36 
all, 10, 30 
"all" (as mapping primitive), 37 
"all" keyword, 30 
Block 
"block", 10, 29, 37 
BlockBlock, 30 
BlockCol, 29 
BlockColOverlap, 29 
BlockOverlap, 29 
BlockRow, 10, 29 
BlockRowOverlap, 29 
"compress", 36 
"cross", 37 
defining new mapping functions, 36 
efficiency of, 114 
FivePt, 30 
in matrix matrix multiplication, 14 
in matrix vector multiplication, 10 
NinePt, 30 
"overlap", 37 
overlaps, 29, 30, 35 
predefined, 7, 10, 29 
user defined, 7, 35 
Wrap 
"wrap", 29, 37 
WrapCol, 29 
WrapRow, 29 

MIMD, 3 
multi-programming, 26 
nondistributed data 

as formal parameters to composite 
procedures, 27 

at program level, 24 
ordinary data 

at environment level, 25 
ordinary data declarations 

at global level, 24 
"out" keyword (call by result), 26 
"overlap" keyword, 37 
overlaps, 29, 30, 35 
Overview of DINO 
overview of DIN 0, 5 

composite procedures, 7 
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host environment, 8 
main() function, 8 
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receives, 7 
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walkthrough, 8 

partitioning of data structures, 6 
in matrix matrix multiplication, 15 
in matrix vector multiplication, 10 
via mapping functions, 35 

performance hints, 114 
program structure, 24 
receives, 7 

efficiency of, 114 
explicit, 16, 19 
explicit environment set, 32 
implicit environment set, 31 
in matrix matrix multiplication, 19 
in matrix vector multiplication, 11 
with "from" construct, 32 

reductions, 25, 33 
gmax(), 33 
gmaxdex(), 33 
gmin(), 33 
gmindex(), 33 
gprod(), 33 
gsum(), 33 
use of an explicit environment set, 34 

remote reference 
efficiency of, 114 

replication of data structures, 6 
in matrix matrix multiplication, 15 
in matrix vector multiplication, 10 
of nondistributed parameters to 

composite procedures, 27 
via mapping functions, 35 

run-time checking, 113 
run-time errors, 11, 113 
scop1ng 

of composite procedures, 25 
of environment structures, 25 

sends, 7 
efficiency of, 114 
explicit, 16, 19 

explicit environment set, 32 
implicit environment set, 31 
in matrix matrix multiplication, 19 
in matrix vector multiplication, 11 

single task semantics, 25 
SPMD, 26, 28 
structure of environments, 24 

in matrix matrix multiplication, 14 
in matrix vector multiplication, 9 

structures of environments 
efficiency of, 114 

synchronization 
in reductions, 34 

thread of control, 25 
user defined mappings, 35 
using DINO, 106 
virtual processors, 3, 4, 5, 25 

mapping onto real processors, 25 
walkthrough, 8 
"wrap" keyword, 37 

efficiency of, 114 
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